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Abstract 

Educational games have been proven to be effective in developing problem solving skills 

in well-defined domain, such as Math and Physics. In this thesis, an educational game 

called Matrix was developed to foster problem solving skills in the domain of linear 

algebra, particularly solving a system of linear equations. Matrix is an adaptive 

educational game that uses intelligent tutoring modules to guide the student's learning 

process and provide feedback based on the student's performance. These modules are 

domain module, student module, pedagogical module and presentation module. The 

domain module contains all the concepts the student needs to learn and an automated 

solver for linear equations that adopts the rules of Gaussian Elimination. The student 

module records the student's performance and provides the pedagogical module with the 

required information about the student's current skills. The pedagogical module uses the 

automated solver to assess the student's performance on the designated task and a 

neuro-fuzzy system to decide on the next proper game level for the student. Matrix has 

been evaluated by 13 students from the Columbus State University. The results show that 

Matrix was well perceived by the students and that they were able to transfer the skills 

learned in the game to real world problems on systems of linear equations. 
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Chapter 1 Introduction 

1.1 Introduction 

Problem solving skills helps us throughout our lives; it is something we use every day. 

We encounter problems, no matter how big or small, which require problem solving skills 

to deal with them (Steve K. Robbins, 2013). In fact mathematics can be seen as a useful 

tool to solve daily problems. We can convert our daily problems into math problems and 

also convert math problems into what we see in daily life, such as puzzles and games 

(Bonnie Averbach, 2012). 

No matter whether it is a math problem or other kind of problem, we improve our 

problem solving skills through education. Education is a form of propagation and 

learning, through which, knowledge, skills, and life experience are learned or transferred. 

With today's technology we can make the process of learning more fun. Problem solving 

skill is as any other skill that requires practice in order to be developed and used 

efficiently. Educational games provide a good platform to improve problem solving 

skills. 

For the purpose of this thesis an adaptive educational game called Matrix was developed. 

Matrix aims to help students to improve their skills using the rules of the elementary 

matrix operations to solve systems of linear equations. Matrix consists of 4 modules - a 

domain module, a student module, a pedagogical module and a presentation module. The 

domain module contains the rules and the problem-solving strategies that the students 

need to learn. The student module tracks students solving steps and reflects the students' 

skills. The pedagogical module provides smart hints that tell the student what the next 

step is when the student does not advance and also determines the next level the student 

Chapter 1    - Introduction 
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should go to after they finish a level. The presentation module provides the GUI for the 

students. Matrix was implemented using Microsoft XNA Game Studio 4.0 and 

programmed in the C# language. 

1.2 Game and Education 

People have learned from games since ancient times. When we play a game, we must 

learn and adapt to the rules of the game in order to get to the challenging goal, which is 

the process by which we learn new knowledge and skills. Before the invention of 

computers, we played card games to learn Arithmetic and played chess to learn strategies. 

After the invention of computer games, the variety of educational games became 

significantly rich. We can find a list of hundreds or thousands of new educational games 

in every decade. The tremendous number of games makes some people fear that games 

are bad educators, which have actually been proven false by successful educational 

games. 

Intelligent educational games allow a personalized learning experience to each individual 

student. Those games can provide instant and individualized feedback by using Artificial 

Intelligence techniques that allow the game to reason, plan, and adapt to each student 

(Rania Hodhod, 2010). 

1.3 Domain of Interest 

When I was learning linear algebra I spent a lot of time practicing the Gaussian 

elimination, which is the most widely used method to solve systems of linear equations, 

which is one of the most basic and most used methods in linear algebra and is also used 

to find the rank, the determinant and inverse matrix of a matrix. Accordingly Gaussian 

Chapter 1    - Introduction 
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Elimination is considered an important technique in linear algebra. 

Gaussian Elimination uses three types of elementary matrices row operations: Row 

switching, row multiplication and row addition. Row switching is exchanging a row in 

the matrix with another one, row multiplication is multiplying each element in a row in 

the matrix by a non-zero constant and row addition is to replace all elements in a row 

with the sum of this row with another row in the matrix. Gaussian Elimination uses these 

operations to transform the coefficient matrix to be a triangular matrix while the constant 

vector is applied by those transformations as well (Robert J. Lopez, 2010). Matrix aims 

to develop problem solving skills in students by providing tasks that help them exercise 

the elementary matrix row operations which are the core of the Gaussian Elimination 

technique. 

Chapter 1    - Introduction 
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Chapter 2 Related Work 

2.1 Problem Solving Skills 

Jennifer Krawec et al. (2012) published a paper that addresses the effects of cognitive 

strategies titled "Instruction on Knowledge of Math Problem-Solving Process of Middle 

School Students with Learning Disabilities". This study investigated the effectiveness of 

a cognitive strategy intervention called Solve It! on students' knowledge of math 

problem-solving strategies. Solve It! was designed to improve the math problem solving 

skills of middle school students who had learning disabilities. This study followed the 

Mayer's (1985) model of the problem-solving process that identifies four sequential 

phases: Problem translation, problem integration, solution planning and solution 

execution. The researchers collected data over the course of two years with two separate 

samples from 7th and 8th grade students. They composed a Math Problem-Solving 

Assessment to measure the students' skills that contains a structured interview consisting 

of two word problems and thirty four items selected from a longer version developed for 

research purpose. The results indicated that the students who got trained on Solve it! were 

able to use more strategies to solve mathematical word problems than those students who 

didn't. 

Robert W. Maloy et al. (2010) published an article that describes the study of a 

web-based mathematics tutoring systems, called 4MALITY, with one hundred and twenty 

five fourth grade students and their teachers. The 4Mality is an online tutoring system 

that was used to promote inquiry learning and problem solving among elementary and 

middle school students. This system uses a hint model to organize suggestions and 

strategies along two axes - problem solving steps and learning style preferences. The 

Chapter 2    - Related Work 
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researchers introduced five steps in the problem-solving axis, which was originally drawn 

from the work of George Polya (1973): Hint Level 1) What kind of question is this?; Hint 

Level 2) What is the question asking for?; Hint Level 3) What do I already know that will 

help solve the problem?; Hint Level 4) What is my plan for solving the problem?; And 

Hint Level 5) How do I know I have solved the problem? They found a mean gain of 

25.51% in test scores from pre-test to post-test among all students. 

2.2 Serious Games 

Damien Djaouti et al. (2011) stated, in their article titled Origins of Serious Games, that 

"Serious Game" was not a new phenomenon. They believe that the very first video games 

were not designed purely for entertainment. The first serious games were not necessarily 

based on a digital support. While there were many games not labelled as serious games, 

they are the closest ancestor to today's serious games. In this work the researchers 

compared the numbers of serious games released each year, and found out that the first 

high peak occurred in 2000's and 2002 was the starting point of the current wave of 

serious games. The researchers pointed out that the number of serious games released in 

2007 was 230, which was twice the number in 2003 that was the highest number before 

2007. They stated that before 2002 education had the highest percentage, 65.8% partition 

of serious games; however this number decreased to 25.7% after 2002 and advertising 

games reached the top with 30.6% of the games. 

Irene Polycarpou et al. (2010) developed an educational game called Math-City, which 

was a simulation-based game for K-12 students to improve their achievement in 

Mathematics. In the game, students can create and maintain their own city. They can add 

their own residential, commercial and industrial buildings in the game. The goal of the 

Chapter 2    - Related Work 
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game is to create a city that has the maximum happiness of the residents, which includes 

five factors - pollution, police, fire, health and big building. In the game, the students 

need to earn their money to develop the city by answering mathematical problems. The 

teachers who participated in the game filled out a survey, and gave mostly positive 

feedback. 

2.3 Fuzzy Systems 

Regina Stathacopoulou (2006) did a study in her thesis about a neural network-based 

fuzzy modeling approach to assess student's learning characteristics and update the 

student module in Intelligent Learning Environments. She designed a three-stage 

diagnostic model, in which the first state is the fuzzification state, the second is the 

inference stage and the third is the defuzzification state. The fuzzification stage represents 

teachers' subjective linguistic description of a students' behavior. The inference state 

represents teachers' reasoning in categorizing students qualitatively according to their 

learning characteristics. And the deffuzification state represents teachers' final decision in 

classifying a student in one of the predefined linguistic values of the characteristic. This 

system has 3 fuzzy inputs and they are the student's total time on the scenario, the 

number of attempts to find the correct forces and the number of random mouse moves. 

And the output is how much the student is interested in the scenario. The experimental 

test result shows that the proposed model accurately evaluated students. 

Shahriar Husainy (2013) did a study concerning the development of a Fuzzy Inference 

System for identifying likely student dropouts at Columbus State University. This system 

was developed and evaluated by utilizing historical students' Retention, Progression and 

Graduation (PRG) data from Columbus State University Information and Technology 
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Services. He used a top-down and a bottom-up approaches to perform the knowledge 

extraction for the system. The top-down approach was used to extract data from the 

knowledge gained from interviewing domain experts for forming the rules. And the 

bottom-up approach was used to analyze the weights of an ANN and derive additional 

rules for the system. 

Chapter 2    - Related Work 
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Chapter 3 Design of Matrix 

3.1 Overview 

This chapter focuses on the educational game Matrix developed for the purpose of this 

thesis. The rules of the game are simply the elementary matrix operations, which are row 

addition, row multiplication and row swapping. The goal of the game is to use those 

operations to get an identity matrix. Matrix is an intelligent educational game in the 

sense that it can track the student's performance and provide individualized feedback. 

MatriX uses four modules to achieve this: a domain module, a student module, a 

pedagogical module and a presentation module. The domain module is the main 

component of the game and is where the game rules are applied. The student module 

records the student's performance and helps providing a personalized learning process. In 

this project, the student module captures the students' actions, cognitive processes and 

provides that information to the pedagogical module. The pedagogical module uses a 

neuro-fuzzy system to provide adaptation to individual students playing the game. 

Adaptation allows the presentation of a sequence of game levels that fits the student's 

skills, i.e. the student doesn't need to play all the game levels in the game. In addition the 

pedagogical module provides the students with smart hints that help the student to 

proceed with his learning activity when he gets stuck. 

3.2 Game Design 

MatriX is a puzzle game, which applies the rules from the Gaussian Elimination 

technique, performing a sequence of elementary operations on the associated matrix of 

coefficients. For example we can derive the system of linear equation like 

Chapter 3    - Design of MatriX 
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r    x + 3y = 8 /X    3 0\./*\      /8\ 
\s + Ay + 2z = 3 to be like I 1    4 2   ■ I y 1 = I 3 1, and then we associate the 
U + 2y + 2z = 5 \X    2 2/   W     \5/ 

coefficient  matrix with  the   constant vector  and  get  an  augmented  matrix   like 

'13    0 
14    2 
,12    2 

8\ 
3 I. This augmented matrix can be easily represented in a game where the 
5/ 

students can practice the different operations of the Gaussian Elimination technique as 

shown in figure 1. 

Figure 1. The GUI Design 

The players just need to drag and drop or click on the rows to perform the different 

operations to reach the identity matrix. 

3.3 Domain Module 

3.3.1 Concepts 

The main concept in the domain module is row reduction in a matrix using elementary 

operations. The domain contains all the problems the student needs to solve and all the 

Chapter 3    - Design of Matrix 
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 10 

concepts the student needs to learn about. There are three main types of operations the 

student needs to understand - row addition, row multiplication and row swapping. The 

row addition is to add one row onto another, the row multiplication is to multiply a row 

by a non-zero constant, and the row switching is to swap two rows, for example: 

•    Row addition 

Row Multiplication 

3\ k* RI - RI (k*o) flk    2k    3k 

2    >     3 2 
3 

1 
4 

Row Switching 

The goal of the Gaussian elimination is to transform a matrix to be in an echelon form, 

which means that all entries below the main diagonal entries are 0. For example: 

However, in this game the goal is to transform the coefficient matrix to be an identity 

matrix so that the student can directly see the roots of the system of linear equations by 

looking at the constant vector at the right side of the augmented matrix. For example, the 

Chapter 3    - Design of MatriX 



www.manaraa.com

 ^ n 

form shown below is a solved matrix, through which we can see the roots are 11,-1 and 

-2. 

10    0 11 
0    10 -1 
0    0    1 -2 

3.3.2 Elimination with matrices 

An automated solver has been implemented to complement the domain module. This 

solver can provide the solution to any solvable 2d, 3d or 4d system of linear equation 

using matrix operations and return the list of steps required to solve this particular 

problem. The solver uses an algorithm derived from Gaussian Elimination. The solver 

doesn't come up with the best solution, as this is an NP problem, which might use even 1 

hour to solve a 3 by 3 matrix, not to mention the 4 by 4 matrix problems. However, the 

solver aims to provide the next step from any current step, which proved to be ab 

excellent way to avoid storing solutions to each problem in the game and, most 

importantly provide high flexibility as the student does not have to follow certain 

sequence of rules to solve the problem in hand. 

For simplification purposes, Matrix does not allow the use of fractions; therefore all 

numbers in the solution must be integers. For this reason the solver cannot directly use 

the algorithm of the Gaussian Elimination, which uses a lot of fractions. Also note that 

the base case of the adapted algorithm is the coefficient matrix reduced to an identity 

matrix rather than a reduced row echelon form. 

3.3.3 Level Difficulty and Level Design 

Problems with different difficulty levels were designed for the purpose of this game. In 

the meantime, Matrix is not set to generate new problems but this is easy to be 

Chapter 3    - Design of Matrix 
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incorporated in Matrix. All what it needs to achieve this is to allow the automated solver 

to use down-top problem solving approach instead of using the top-down approach. This 

part is left as future work as it was not required to fulfill the requirements of this thesis. 

There are different ways that can be approached in order to design game levels (problems) 

with different difficulties. One way is to randomly choose a couple of numbers as the 

coefficient of the systems of linear equations. However, using this approach makes it hard 

to manage the level difficulties and requires us to check the rank of each matrix to make 

sure it is solvable. Another approach, which is adopted in this work, applies elementary 

matrix operations on the identity matrix to generate a new problem. This way we could 

easily control the difficulty level by controlling the number of steps of elementary 

operation on the matrix to generate the new problem. This is a process similar to mixing 

up a Rubik Cube; the more times we turn any side of the cube, the more difficult it would 

be to solve it. 

For example, assume we have the two transformations below, 

'1    0    0\       /l    0    0^ 
0    1    0]->(l    1    0 

.0    0    1/      VO    0    V 
Transformation 1 

f\    0    (T 
0    10 

.0    0    1> 

'1    0    0^ 
110 

.0    0    1/ 

'1    0    0N 

110 
a   l   h 

Transformation 2 

It can be seen that the result of Transformation 1 is easier than the result of 

Transformation 2, because Transformation 2 uses more steps than Transformation 1. The 

dimension of the matrix is also a great factor to define the difficulty level. Solving a 3-D 

matrix seems to be more difficult than solving a 2-D one, even if both problems require 

Chapter 3    - Design of Matrix 
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the same number of steps in the solution. 

The pedagogical module is responsible for providing adaptation that helps the student to 

experience an appropriate learning curve. A reasonable difficulty curve can keep the 

learning experience balanced to the student. For that purpose, we designed 12 easy levels, 

12 medium levels and 8 hard levels and used numbers from 0 to 100 to represent the 

difficulty level (this will be converted to 0-1 to be used as a membership function in the 

student module). The following table demonstrates the distribution of the difficulty level 

of the problems. 

Table 1. Level Difficulty 

Level No Difficulty Degree Difficulty 

0-11 (0,25] Easy 

12-23 (25,75] Medium 

24-31 (75,100] Hard 

The following formula is used to determine the difficulty level of each problem, 

l-la (ym-mQ)    ° + m0 

In this formula, m0 represents the lower bound of the difficulty level of the current 

problem; m represents the upper bound of the difficulty level of the current problem; n 

represents the number of levels in the current level difficulty; / represents the current 

level number and /0 represents the initial level number of the current difficulty level. 

Chapter 3    - Design of MatriX 
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15 20 

Game Levels 

Figure 2. The Difficulty Curve 

Figure 2 shows the difficulty curve obtained from the above formula. The x-axis 

represents the level number of each level, and the y-axis represents the level difficulty 

degree. As we can see every time we enter a new level difficulty, such as from easy to 

medium or from medium to hard, the slope is increasing gently which allows the student 

to fit into the new difficulty level smoothly when advancing from one level to another. 

3.4 Student Module 

The student module is a crucial part of MatriX. The student module records the 

performance and learning ability of the student, which will be used by the pedagogical 

module in MatirX. Accordingly, the pedagogical module would know what steps did the 

student take to solve the problems, how much time the student used to solve the problems 

and the current difficulty level the student is on, so that the pedagogical module can 

automatically choose the next appropriate level or problem that fits the student most. 

Moreover, the pedagogical module can give the right level of smart hints to the student 

Chapter 3    - Design of MatriX 
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when the student gets stuck. 

3.5 Pedagogical Module 

The pedagogical module is another essential module in Matrix. It provides hints about 

the next step when the student gets stuck. Most importantly, it uses a fuzzy system of 

rules to decide on the difficulty level of the next problem to be presented to the student. 

The pedagogical module requests information from the domain and the student modules 

to provide an individualized learning process accordingly. 

3.5.1 Fuzzy System Design 

In order to select the right difficulty level for the student, a system of fuzzy rules was 

developed that evaluates the student's performance. The information collected from the 

student module represents the different premises of the rules and the output represents the 

difficulty level of the next problem. The rules were designed to be used in a neuro-fuzzy 

system that has functions make it be able to learn from the student. Unfortunately the 

learning functions were turned off in this work because of the abundance of training data. 

The following section describes the neuro-fuzzy system in detail. 

-    Input/Outputs 

The neuro-fuzzy system has 3 input layers and 1 output layer. The inputs include: 1- Step: 

the value of Step is defined by the difference between the number of steps taken by the 

automated solver to solve the problem and the number of steps taken by the student to 

solve the same problem divided by the number of steps taken by the automated solver to 

solve the problem. If we have a problem with expected step count to be 3 and the student 

used 4 steps then the value of Step would be 1/3. 2- Time: The value of time is defined to 

Chapter 3    - Design of Matrix 
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be the time the student expected to use dividing the comparison between the time the 

student expected to use and the time taken by the student. 3- Level: The value of Level is 

defined by the difficulty degree of the current game level. The following shows the 

formulas used to compute each input 

Step = 

f: I userStepCount - expectedStepCount 

V expectedStepCount 

Time = 
userTime - expectedTime 

expectedTime 

{userStepCount < expectedStepCount) 
(userStepCount > 2 * expectedStepCount) 

(Other) 

(userTime < expectedTime) 
(userTime > 2 * expectedTime) 

(Other) 

■    Level = difficulty degree of the current game level 

The output of the neuro-fuzzy system is the difficulty degree of the next problem. All the 

values mentioned above are clamped in the range from 0 to 1. For example, if the student 

used three times of the expected time, the value of Time is one. This can be attributed to 

the fact that the expected performance varies from one problem to another. 

Membership Functions 

Each of the input variables along with the output variable is represented with a 

membership function as seen in Figure 3, 4, 5 and 6. The Step variable has three fuzzy 

values: fast, medium and slow. A triangular and trapezoidal membership functions are 

used to represent those values as seen in Figure 3. 

Chapter 3    - Design of Matrix 
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input variable 'stepDifT 

Figure 3. Step Membership Functions 

The Time variable has three fuzzy values: fast, medium and slow. A triangular and 

trapezoidal membership functions are used to represent those values as seen in Figure 4. 

input variable time' 

Figure 4. Time Membership Functions 

For the level there are also 3 membership functions, easy, medium and hard. Their ranges 

are as in the following figure. These membership functions are used as input membership 

function for level input and as output membership function for level output as well. The 

Chapter 3    - Design of MatriX 
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membership functions for the levels and outputs are used to represent those values as 

seen in Figure 6. 

Membership function ptots 

input variable "tevef 

Figure 5. Level and Output Membership Functions 

Fuzzy Rule Design 

The designed rules considered all the possible combinations of inputs as shown in Table 

2. 

 Table 2. Rules Used In the Fuzzy System  

Rule No. Rule 

If (stepDiff is large) and (level is easy) then (outputl is easy) 

If (stepDiff is medium) and (time is Slow) and (level is easy) then 
(outputl is easy) 

If (stepDiff is medium) and (time is medium) and (level is easy) 
then (outputl is easy) 

If (stepDiff is medium) and (time is Fast) and (level is easy) then 

(outputl is medium) 

If (stepDiff is Small) and (time is Slow) and (level is easy) then 

(outputl is easy) 

Weight 

1 
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19 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

If (stepDiff is Small) and (time is medium) and (level is easy) then 
(output 1 is medium) 

If (stepDiff is Small) and (time is Fast) and (level is easy) then 
(output 1 is medium) 

If (stepDiff is large) and (time is Slow) and (level is medium) then 

(output 1 is easy) 

If (stepDiff is large) and (time is medium) and (level is medium) 
then (outputl is medium) 

If (stepDiff is large) and (time is Fast) and (level is medium) then 
(outputl is medium) 

If (stepDiff is medium) and (time is Slow) and (level is medium) 
then (outputl is medium) 

If (stepDiff is medium) and (time is medium) and (level is medium) 
then (outputl is medium) 

If (stepDiff is medium) and (time is Fast) and (level is medium) 
then (outputl is hard) 

If (stepDiff is Small) and (time is Slow) and (level is medium) then 
(outputl is medium) 

If (stepDiff is Small) and (time is medium) and (level is medium) 
then (outputl is hard) 

If (stepDiff is Small) and (time is Fast) and (level is medium) then 

(outputl is hard) 

If (stepDiff is large) and (time is Slow) and (level is hard) then 
(outputl is medium) 

If (stepDiff is large) and (time is medium) and (level is hard) then 
(outputl is hard) 

If (stepDiff is large) and (time is Fast) and (level is hard) then 

(outputl is hard) 

If (stepDiff is medium) and (level is hard) then (outputl is hard) 

If (stepDiff is Small) and (level is hard) then (outputl is hard) 
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-    Level Selection 

The fuzzy system uses the 3 inputs (Step, Time, and Level) to figure out the appropriate 

difficulty degree of the next problem. And then the pedagogical module selects a problem 

that has the closest value to the resulting difficulty degree. As seen in Figure 6, the z-axis 

represents the difficulty of the output, the x and y axes represent Time and Step 

respectively. When the inputs are in a particular range the output will remain at 0.1, 0.5 

and 0.8. This means that in this certain range of inputs the output remains the same 

(undesired output as we need a different output each time). Accordingly, the pedagogical 

module selects a game level that has the difficulty degree in the resulting difficulty level 

while allowing variations of problems. 

Figure 6. 3D Output Graph of the Fuzzy System 
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3.5.2 Smart Hint 

A smart hint in this game is the next step that the pedagogical module gives to the student 

when the student gets stuck, which is the responsibility of the pedagogical module. The 

pedagogical module uses the automated solver to provide the student with the next step. 

Whenever the student takes a new step in the solution, the game records the step and 

compares it along with all previous steps taken by the student to the solution generated by 

the automated solver. If the steps taken by the student did not match the steps generated 

by the automated solver the pedagogical module uses the current student's step as a new 

problem and work on solving it using the automated solver so that it can provide the 

student with the next step. The student is free to apply that proposed operation or work 

his own. 

3.6 Presentation Module 

The presentation module provides the interface that allows the student to interact with the 

game and perform the elementary matrix operations. It also shows them hints when 

requested, in addition to time and number of steps they took to solve the current problem. 
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Figure 7. The Screenshot of The Game Level Screen 

The interface shows the coefficient matrix in the blue box and the constant vector in the 

green box. The student can perform a row addition by dragging a row and dropping it 

onto another row. The student can perform a row multiplication by right-clicking on a 

row and clicking on the number pad. The row switching operation is performed 

automatically by the game. On the right side of the screen there are two labels to show 

the number of moves (steps) and the time elapsed for the current problem. The smart hint 

button is shown below these two labels. 
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Figure 8. Performing An Elementary Operation on A Row 

If the student clicks on the hint button a message box will shows up telling the student 

what the next step should be. The student can choose to follow the hint or not. 

Figure 9. A Screenshot of the Hint Message Box 
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3.7 Objective of Game Design 

The objective of the game design is to improve the student's solving skills in the domain 

of systems of linear equations using elementary matrix operations. The aim was to 

develop intelligent tutoring modules that adapt to the student and help the student learn 

the skills. The game should be able to provide an individualized learning process to each 

student in which they experience a personalized learning path. The graphical user 

interface maps to the actual problems' representation in a way that should ease the 

transfer of skills from the game to real world problems. 
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Chapter 4 Implementation of Matrix 

4.1 Overview 

This Game is implemented using Microsoft XNA Game Studio 4.0 and programmed in 

the C-Sharp language. Microsoft XNA Game Studio is a video game developing platform 

based on the .Net Framework 4.0, which enables developers to develop video games for 

the Windows PC, Xbox 360 and Windows Phone (Aaron Reed, 2010). All the 

implemented modules in Matrix were implemented without using any third-party 

libraries, so that Matrix can run as a standalone application. To run Matrix, users only 

require the .Net Framework 4.0, XNA Framework 4.0, and Games for Windows Live 

installed on their PC. 

4.1.1 Architecture 

Domain Module 

MatrixGameContent 
•   Game Levels 

MatrixSolver 
•    Elimination 

Algorithm 

MatrixGame 
ContentPipeline |(StaitUp Project) 

Level 
ModelType 
• Solution 
• Levellnfo 

MatrixGame 

Student Module 

~W~ 

ModelType 
•    Fuzzy Status 

MatrixGame 
(Startup Project) 
• Tutorial 
• Smart Hint 
• Handle 

LevelFinishEvent 

PerformanceEvaluator 

Fuzzy System 

Pedagogic: 1 Module 

|: 

MatrixGame (Startup 
Project) 
• Track Student's 

Steps 
• TimeSpan 
• Current level 

difficulty 

ModelType 
•   Step 

MatrixGameContent 
•   Ul Contents 

Presentation Module 

MatrixGame (Startup Project) 
• Screens 
• Handle Inputs 

J 
Figure 10. Architecture of MatriX 
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Figure 10 shows the architecture of Matrix. The way the different modules interact with 

one another is as follows: The domain module stores the problems as game levels and 

also calculates and stores the solutions of these problems. The presentation module reads 

the information of current level from the domain module and displays it on the screen and 

handles the inputs of the students. The student module gets the students inputs from the 

presentation module and tracks the students' performance. The pedagogical module 

requests the student's information from the student module and content information from 

the domain module upon which it determines the proper game level the student needs to 

play next, finally the pedagogical module informs the presentation module to present that 

level to the student. 

The MatriX application consists of 6 projects - MatrixGame, ModelType, 

MatrixGameContentPipeline, MatrixGameContent, MatrixSolver and 

PerformanceEvaluator in which MatrixGame, ModelType, MatrixGameContentPipeline, 

MatrixGameContent and MatrixSolver are the components of the domain module. The 

jobs of each module cannot be done by only one project; this is because some data are 

cross-referenced between modules. Meanwhile, the project MatrixGame and the project 

MatrixGameContent are also parts of the presentation module. Most of the tasks required 

by the student module are done by the Level class in the MatrixGame project, while the 

tasks of the pedagogical module are done by a project called PerformanceEvaluator. 

The project MatrixGame does the final tasks of each module. As for the domain module, 

this project handles all the game logic, applies the domain rules. As for the student 

module, it tracks the steps taken by the students when they are trying to solve a level, 

record the time span. And as for the pedagogical module, it comprehends information 

from the domain and student modules, gives smart hint and selects game levels. As for 
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the presentation module, this project draws all the contents on the screen and manages 

screens used for different purposes. This project is also the application entry point and is 

built as an executable file. 

The project ModelType is a part of the domain module, which contains the data structures 

that are used by the modules, such as the problem the student is going to solve, and stores 

the problem-solving solutions. As the domain module needs to communicate with other 

modules, this project is also referred to by other projects (modules), such as student and 

pedagogical modules. 

The MatrixGameContent stores all the game assets such as textures and scripts. The game 

needs to read all the data it needs from this Content project through the content pipeline. 

The most commonly used types of assets are already supported by the XNA Game Studio, 

in which the default content pipeline can process most of the game contents stored in the 

hard drive. However, some of those contents are new to XNA, for example, level 

information. Therefore we needed to implement our own content pipeline to import those 

levels (system of linear equations problems) from the content project to the game. So the 

MatrixGameContentPipeline project imports those level asset files, processes them, 

converts them to a level information object, and passes it to the game. 

The pedagogical module for this game needs to answer the student's request at any point 

during the problem solving process and tells them what to do next, so this module gets 

the solution from the MatrixSolver project, which is in the domain module and solves any 

given system of linear equations in the form of an augmented matrix. The pedagogical 

module is responsible for choosing the next game level for the student. The 

PerformanceEvaluator is implemented for this purpose, in which there is a fuzzy system 
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that is in essence a neurofuzzy network. This module receives the student's performance 

from the student module and gives the difficulty degree of the next level, and then selects 

the next game level (problem) from the levels defined in the domain module. The 

neuro-fuzzy network in this module does fuzzy reasoning and is capable of doing 

back-propagation learning. However, we turned off the learning functions as we did not 

have enough data to train this neuro-fuzzy system, which might cause enormous 

inaccuracy if we leave the learning functions on. 
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4.2 Domain Module 

As mentioned above, the domain module stores the problems that students need to solve, 

and applies the game rules, logic and the problem-solving skill that students need to learn. 

Those jobs are done by five projects - MatrixGame, MatrixSolver, MatrixGameContent, 

MatrixGameContentPipeline and ModelType. 

4.2.1 Structure 

Domain Module MatrixGameContent MatrixGame (Startup Project) 

Level 
Class 

MatrixGameContentPipeline 

LevellnfoWriter           SolutionWriter 
Class                             class 

Matrix Solver 

MatrixSolver 
Class 

ModelType 

Level Info 
Class 

Step 
Abatract Class 

Solution 
Class 

RowMuitipiicationstep      RowSwitchingStep       RowAdditionStep 
Class Class class 

Figure 11. Domain Module Structure 

As seen in Figure 11 the jobs of the domain module are allocated to these projects. The 

Level class represents a problem the student needs to solve, which in this domain module 

communicates with both the student and pedagogical modules. 
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4.2.2 Game Level 

The most important class is the Level class, which represents a game level. It refers to all 

other projects, and manages the game logic and rules in addition to fulfilling the 

functions of the game. The level has the following members that works for the domain 

module. 

Table 3. Mem bers of Level for Domain Module 

Private 

Field 

Private 

Field 

Private 

Field 

Property 

Name 

levellnfo 

matrixTiles 

vectorTiles 

ExpectedStepCount 

Description 

An instance of Levellnfo class in ModelType project. 

It contains all the information of a level loaded from 

the content asset, such as the matrix and constants of 

the problem, the expected time use and the problem 

solving solution. 

The current matrix that is being operated on by the 

student. This field is also used by the presentation 

module to present the matrix to the student and 

display the different operations the student's applying 

to the matrix. 

The current constants vector that is being operated on 

by the student, and is the extension part of matrix. 

This field is also used by the presentation module to 

present any constants to the student. 

Gets the expected step count of the current level from 

the levellnfo instance. 
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Property 

Property 

Method 

Method 

Method 

Method 

Event 

ExpectedTimeUse 

Is Won 

DoRowAddition 

DoRowMultiplication 

Gets the expected time of the current level from the 

levellnfo instance. 

Gets the winning state of the current level; determines 

if the player has won the current level (solved the 

problem). 

Performs a Row Addition operation on the current 

matrixTiles and vector Tiles. 

Performs  a  Row  Multiplication  operation  on the 

current matrixTiles and vector Tiles. 

DoRowS witching 

GetRestSteps 

LevelFinishedEvent 

Performs a Row Switching operation on the current 

matrixTiles and vector Tiles. 

Gets the solution for the rest of the steps the student 

needs to take. 

Occurs when the student has won the current level. 

This event is handled by the MatrixGame instance. 

4.2.3 Matrix Solver 

For the purpose of this thesis, we implemented an algorithm that performs elementary 

matrix operations to transform a matrix to an identity matrix. None of the existing 

Gaussian Elimination algorithms such as partial pivoting elimination algorithms seem to 

work for us. That was because, as discussed earlier, some new rules were added to the 
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game as follows; 

No fractions 

• Rule Swapping is operated only when at least one row is reduced and only by the 

computer automatically. 

• The coefficient matrix should be transformed to an identity matrix instead of a row 

echelon form. 

The approach is to eliminate the maximum eliminable element in the row with maximum 

number of non-zero entries all the time until the matrix is identity. The first step in the 

process is to check if the given matrix is an identity matrix. If it is then return finish 

computing. The next step is to check if we need to switch the rows. In this step, we apply 

the following transformation. 

'Oil 

^31 

a12 

0 

«32 

Ol3 
0 
0 

'<*23 0 0 

c2 

c3/ 
Gil      a12      a13 

*31 l32 C3/ 

In the example above the second row is switched with the first row as the second row has 

the entry in the first column that is 1 and rest are Os. This process makes sure the 

following form will never appear in the game. 

'0    1    (T 
0    0    1 

,1    0    0, 

Then we go to the first step of elimination, which is to find the row that has the maximum 

number of non-zeroes. The row with the maximum number of non-zeroes will be the row 
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that is added on by another row. For example in the following matrix, row no. 2 will be 

selected. 

fd e 0\ 
[a b c) 
VO    /   gj 

However, in some cases we do not want to select the row that has the maximum number 

of non-zeroes. For example in the matrix below, although the first row has the maximum 

number of non-zeroes, it will not be chosen to be operated on by other rows. If we add 

any of the rest of the rows on to the first row, the second entry on this row would not be 

equal to 0 anymore. And that is want we need to avoid. 

'air     0 a13 a14
N 

0 a22 0       0 
0 a32 a33     0 
0 a42 0 a44/ 

For the following matrix, the first row can be chosen, because the fourth row can be 

added to it and would not change the value of the 0 entry. 

0      a. a. <axr     u     u13    u14 

0     a22     0       0 
0     a 
0 

32 a 33 0 
0       0 a 4V 

However in some cases you might not find any row that can be selected, such as the 

following matrix: 

0     a12    a13    a 
a 21 0     a 

14 

23      a24 
a31    a32     0     a34 

va41    a42    a43     0 
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In this case, we can select any row and check the count of non-zero numbers in the 

selected row. If the count number equals 1 then it means the rest of the entries in this row 

are Os. In this case we divide the selected row by the value of the only entry that is not 

zero. If the count number is greater than 1 then we find another row to eliminate the entry 

in the row. Therefore we need to decide which entry we need to eliminate. We first 

exclude those entries equal to 0 and then exclude the ones that cannot be eliminated by 

any row. 

For example: 

0 a12 a13 a14
N 

a21 0 a23 a24 

0 0 a33     0 
va41 0 a43 a44, 

In the matrix above, we would not select the first entry in the first row as it is 0. We 

would not select the second one either, because it is not eliminable. So then we need to 

choose from the third and fourth ones. Normally we select the one with the maximum 

absolute value, but when we are selecting which column in the row should be eliminated, 

we need to avoid selecting the ones that cause the zeroes to be added to other non-zero 

values in the row we selected. For example in the above matrix, we won't select the 

fourth entry in the first row to eliminate. In this case we exclude those rows that has 

non-zero at the column that we have 0 in the row we selected earlier. Then we select the 

entry with the maximum absolute value from those entries which can be eliminated by 

the rows that are not excluded. 

After we select the cell we want to eliminate, we identify its row and work on selecting 

another row to add it to the identified row. If there is only one row available we should 
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select that row, otherwise we choose the one that has the maximum number of zeroes. 

Once we decide on the cell to be eliminated and the row that can eliminate this cell, we 

first calculate the least common multiple of the number we are going to eliminate and the 

number that eliminates it. Then we do row multiplication to those two rows by the 

quotient of the least common multiple and these two numbers. And then do the row 

addition to eliminate the cell. The process would look like this: 

a 13 a 14 

42!     0     a23    a24\      =LCM(ai3,a33), therefore, 
0     a 33 0 
0     a43    a44, 

/o 

V 

a21 

0 

a41 

(°   a-*(^)  a»*©  a'4*©\ 
a21 

0 

Va. 41 

a12 (-) \a33J 
0 

0 

0 

0 

0 

0 

<a13> 

«23 

a 43 

«24 

0 

a44 / 

0 a14 \a33J 

a-23 

a« * © 
«43 

«24 

0 
,n= LCM(a13,a33) 

a 44 / 

Then we apply the same process recursively until we have an identity matrix. To avoid an 

over-flow exception, before each recursive step we included a process that reduces each 

row of the matrix by the greatest common divisor of each row. However, this doesn't 

solve the problem permanently. 

To test the stability of the developed algorithm, a tool was implemented to test all the 

possible 2 by 2 matrices, 10,000 random 3 by 3 matrices and 10,000 random 4 by 4 
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matrices, in which all entries were ranged from 0 to 9. The results are shown in the Table 

4. 

Table 4. Failure Rate of the Algorithm  

Dimension 

2 by 2 

3 by 3 

4 by 4 

Failure Rate 

0% 

0% 

3.128% 

As we can see from Table 4, 3.128% of the 4 by 4 matrix problems cannot be solved 

using this algorithm, but this is good enough for this game. To avoid the problems that 

occur in 4 by 4 matrices, it becomes important to limit the number of steps of the 

recursive call. On the other side, no problems were encountered with all matrix problems 

of size less than 4x4. 

4.3 Student Module 

The student module tracks the student's moves and reflects on the student's performance 

to the pedagogical module, which it is implemented in the Level class mentioned earlier. 

The Level class does not only represent a problem the student needs to solve, but also 

gives the stage for the student to perform so that the game can track the student's moves. 

The following table shows the members that works for the student module in the level 

class. 

Table 5. Members of Level for Domain Module 
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Private 

Field 

Method 

Method 

Method 

Event 

stepsRecord 

DoRowAddition 

A list of instances of the ModelType.Step abstract 

class that is used to records the students' steps. 

This method records one step into the stepsRecord 

after an operation is performed successfully. 

DoRowMultiplication   This method records one step into the stepsRecord 

after an operation is performed successfully. 

DoRowSwitching 

LevelFinishedEvent 

This method records one step into the stepsRecord 

after an operation performed successfully. 

Occurs when the student has won this level. This 

event passes the LevelFinishedEventArgs to the 

pedagogical module, in which the time span, step 

count and current level difficulty will be used by the 

pedagogical module to evaluate the student 

performance. 

4.4 Pedagogical Module 

The pedagogical module allows MatriX to adapt to individual students using a 

neuro-fuzzy system. The pedagogical module receives information on the student's 

performance from the student module and content information from the domain module 

to help it make strategic decisions about the student's learning process. 
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4.4.1 Fuzzy system 

The structure of the neuro-fuzzy system is a neural network with nodes acting as neurons 

connected together forming links. Each node gathers input values from all previous nodes 

linked to it (Michael Negnevitsky, 2011). 

Figure 12. Getting Inputs from Previous Nodes 

A method called UpdateOutput is used by the nodes to generate an input array, in which 

each entry equals the output value from previous node times the weight and minus the 

threshold as the formula below. 

inputn = V outputm * weightm - threshold 

However, in this program, each layer has a switch to indicate if the training and weights 

are enabled in the current layer. If the switch is turned off (Boolean value equals false) 

then each value in the input array would simply be equal to the output value from the 

previous node. 
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Figure 13. The Structure of the Neuro-fuzzy System 
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After the node gets the input values, it passes the input values to a method called 

Compute. Each node updates its output value using the expression below; 

(outputn = 1 + eJompute0)   if this, layer. EnableWeights 

outputn = compute^)     if not this, layer. EnableW eights 

When training each node -if the layer the node belongs to enables training- the node 

computes the error gradient using the error gradient of the next nodes, then it uses the 

new error gradient to compute the weight delta and add this delta value to the current 

weight value. Although these functions were implemented in MatriX, the learning 

functionality was turned off as discussed later in this thesis. 

The compute methods vary by the kinds of the nodes. Table 6 shows the different 

implementation of the compute methods. 

 Table 6. Compute Methods     

Type of Node 

Input Node 

Fuzzification Node 

Compute Method 

Returns the average value of the inputs 

Rule Node 

Output membership function node 

Returns the result of the membership function, 

using the average value of the inputs as the 

input of the membership function 

Returns the minimum value of the inputs 

Returns the result of the output membership 

function, using the maximum value of the 

inputs as the input of the membership function 
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Defuzzification Node Returns the result of centroid function 

The membership functions are not implemented in the node classes and are invoked as 

delegates in the compute methods. These membership functions are implemented by the 

instance that uses the fuzzy system in order to allow the system to be as generalized as 

possible. The centroid function uses the following expression: 

X outputi * centersi 
centriod = 

X ouputi 

To get the output of the system, the system searches the network layer by layer and then 

searches each layer node by node then calls all update output methods for each node, and 

finally returns the output values of the nodes in the last layer. 

To explain how to use this fuzzy system, here we have a simple example. First we need to 

define your input nodes, fuzzification nodes, rule nodes, output-membership-function 

nodes and defuzzification nodes. Each node has a member called PreviousNode, which is 

used to connect the new node with nodes in the previous layer. There is also a member 

property called NextNode used to connect nodes in the next layer. However we do not 

need to take care of the NextNode properties as this is done automatically when the 

EndBuild method is called. Finally BeginBuild and EndBuild methods are called at the 

beginning to build the network and at the end to finish the building process building, 

respectively. The following code is used to define an input node. 

C# 

InputNode inputNode = new InputNodeQ { Name = "input_l" }; 
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After then the fuzzification nodes are defined. When building a new fuzzification node, 

we need to assign a property in the node called PreviousNodes and a suitable method to 

the membership function delegate. In the invoked membership function delegate, some 

other functions such as trimf and trapmf were invoked from the Math class, in which the 

trimf represents a triangular-shaped membership function and the trapmf represents a 

trapezoidal-shaped membership function. Sample code follows: 

C# 

FuzzificationNode fuzzl = new FuzzificationNode() 

{ 
PreviousNodes = new List<Node>() {inputNode }, 

Name = "fuzzl", 

MembershipFunction = (n) => 

{ 
return MathHelper.trimf(n.InputValues.Average(), 0, 0.2, 0.5); 

} 

}; 

FuzzificationNode fuzz2 = new FuzzificationNode() 

{ 
PreviousNodes = new List<Node>() { inputNode }, 

Name = "fuzz2", 

MembershipFunction = (n) => 

{ 
return MatliHelper.trampf(n.InputValues.Average(), 0.3, 0.5,0.6, 1); 

} 

}; 

After defining the fuzzification nodes, we define the rule nodes in which the previous 
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nodes property was assigned by the fuzzification nodes defined earlier as shown below; 

C# 

RuleNode rulel = new RuleNode() 

{ 

PreviousNodes = new List<Node>() { fuzzl }, 

Name = "R01" 

}; 

RuleNode rule2 = new RuleNode() 

{ 

PreviousNodes = new List<Node>() { fuzz2 }, 

Name = "R02" 

}; 

Then we define the output membership function nodes. When we are building a new node, 

we need to assign a rule node or several to the previous node property. Also we need to 

assign a method to the output membership function delegate, for which we used lambda 

expression again in the sample code. In the method that we assigned to the output 

membership function delegate, we called some functions such as triArea and trapArea, in 

which the triArea calculates the area form by a triangular-shaped membership function 

and the trapArea calculates the area form by a trapezoidal-shaped membership function. 

Also we assign the center value of the membership functions, which would be used for 

centroid calculation in deffuzification. The sample codes follow: 
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C# 

OutputMembershipFunctionNode outl = new OutputMembershipFunctionNode() 

{ 

PreviousNodes = new List<Node>() { rulel }, 

Name = "outl", 

OutputMembershipFunction = (n) => 

{n.Center=0.5; return MathHelper.trapArea(n.InputValues.Max(), 0.25, 

0.4, 0.6, 0.75); 

} 

}; 

OutputMembershipFunctionNode out2 = new OutputMembershipFunctionNode() 

{ 

PreviousNodes = new List<Node>() { rule2 }, 

Name = "out2", 

OutputMembershipFunction = (n) =>{n.Center=0.75; 

return MathHelper.triArea(n.InputValues.Max(), 0.5, 0.75, le+06); 

}}; 
Then we define the defuzzification node, and link it with all the output membership 

nodes by assigning the previous nodes' properties. 

C# 

DefuzzificationNode defuzziNode = new DefuzzificationNode() { PreviousNodes - new List<Node>() 

{ outl, out2 }, Name = "DefuzzNode" }; 

Then the BeginBuild method is called to let the system know the network is built but not 

ready to use. And then we add those nodes defined earlier to relative layers, and indicate 

which layer would enable learning and weights (currently disabled in this work). After 

that the learning rate is declared if the learning method is enabled in any layer. Finally, 
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we call the EndBuild method, which automatically assigns the nextNodes properties in 

each node that links one node with the next one. 

C# 

nfs.BeginBuild(); 

nfs.InputLayer.AddNodes(inputNode); 

nfs.FuzzificationLayer.AddNodes(fuzzl, fuzz2); 

nfs.FuzzificationLayer.EnableWeights=false; 

nfs.RulesLayer.AddNodes(rulel, rule2); 

nfs.RulesLayer.EnableWeights = false; 

nfs.OutputMembershipFunctionLayer.AddNodes(outl,out2); 

nfs.OutputMembershipFunctionLayer.Enable Weights = false; 

nfs.DefuzzificationLayer.AddNodes(defuzziNode); 

nfs.DefuzzificationLayer.Enable Weights = false; 

nfs.EnableHiddenLayer = false; 

nfs.LearningRate = 0.3; 

nfs.EndBuild(); 

After the pedagogical module decides on the difficulty level of the next problem to 

present to the student, it selects a problem that has the closest difficulty degree to the one 

given by the fuzzy system from the domain module. The pedagogical module also checks 

if this problem has been solved earlier by the student, if it is the case it requests another 

problem from the domain module. The code is as follows: 

C# 

float nextDiff = performanceEvaluator.GetNextLevelDifficulty(stepDiff, timeDiff, 

e.LevelDifficulty,out fs); 

hit prelndex = currentLevellndex; 
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currentLevellndex = levels.IndexOf(nextDiff); 

if (prelndex < 2) 

currentLevellndex = prelndex + 1; 

else if (fs.StepCount = ModelType.StepCount.TooMany && (fs.TimeUsed == 

ModelType.TimeUsed.Medium || fs.TimeUsed == 

ModelType.TimeUsed.TooLong)&&(preIndex+KcurrentLevelIndex)) 

currentLevellndex = prelndex + 1; 

else if (currentLevellndex == prelndex) 

{ 

switch (fs.NextLevelDifficulty) 

{ 

case ModelType.LevelDifficulty.Easy: 

currentLevelIndex++; 

break; 

case ModelType.LevelDifficulty .Medium: 

currentLevelIndex++; 

break; 

case ModelType.LevelDifficulty .Hard: 

if ((currentLevellndex + 1) >= levels.Count) 

{ 

foreach (var 1 in levels) 

{ 

if(l.Difficulty>=0.75) 

{ 

currentLevellndex = levels.IndexOf(l.Difficulty); 

break; 

} 
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} 

} 

else 

currentLevellndex = prelndex + 1; 

break; 

default: 

break;}} 

4.4.2 Smart Hint 

The pedagogical module gives the student a smart hint on what to do next when the 

student is stuck while trying to solve the problem at hand. When the student clicks on the 

Smart Hint button a message box pops up and tells the students what to do next. While 

testing the smart hint in Matrix, a loop glitch happened in which the pedagogical module 

keeps repeating the same hint. This occurred when the student tries to eliminate an entry 

in the matrix. For example, let's consider to eliminate one row in the following matrix: 

'3    2    4 
2    11 

.0    0    1 

The program believes we should eliminate the upper left cell in the first row (the digit 3). 

This can be achieved by multiplying the first row by 2 as follows: 

'6    4    8 
2    11 

.0    0    1 

After the student followed this hint, Matrix would regenerate a new solution. As in the 

algorithm we mentioned earlier, the first step would be each row in the matrix, thus the 
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hint would give the students the hint that they need to divide the first row by 2. But the 

correct hint should be multiply the second row by 3. 

In order to avoid this issue, each step the student takes is tracked and compared to the 

generated solution. If the student's solution follows that solution generated by MatriX 

then the hints are provided directly from the generated solution. If it is not the case, then 

Matrix redefines the problem and uses the student's current step as the new problem and 

generates the solution for it. The code is as follows: 

Pseudo 

Forn = 0...n 

If result matrix of step n in previousSolution == currentMatrix Then 

Add (n + 1) to startinglndexes list 

End if 

Next 

If count of startinglndexes != 0 Then 

result = Copy previousSolution from the max index of starting indexes 

End if 
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Chapter 5 Evaluation 

In order to evaluate this game, we recruited 13 students from Columbus State University 

to test the game, most of who were undergraduate students with couple of graduate 

students. All game testers were requested to finish a pre-test, play the game for 3 days 

and then take a post- test and a survey about their play experience. 

5.1 Goal 

The goal of the evaluation is to answer following questions, 

•    Can the game help the player learn how to solve linear equations by using Gaussian 

Elimination? 

•    Is the game's user interface friendly enough? 

Can the game adapt successfully to individual students? 
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5.2 Experimental Testing 

In order to answer these questions, we invited 13 students to take a pre-test, play the 

game for 3 days and finally answer a post-test and a survey about their play experience. 

In the pre-test, there were some questions asking about their educational level, gender 

and algebra courses they had taken followed by a set of questions on systems of linear 

equations. In the post test similar math problems to those in the pre-test were introduced.. 

The following table shows the questions in the pre-test. 

Table 7. Pre-test Interviews Questions 

Question 0 

Educational level and gender. 

Question 1 

Have you ever taken any algebra courses or related courses? If yes, please list the names 

of the courses. 

Question 2 

Have you learnt linear algebra before? 

Question 3 

Please try to solve the following equations or sets of equations. 

i.3x + 5 = 4 

.. (3x + 5y = 10 
Ui   * + 3 = 8 
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x + y + z = 12 
iii.{x + 2y + 5z = 22 

x = Ay 

I + m = 5 
I + m + p = 5 

AZ + 2m + n + p = 8 
2/ + m + 2p = 8 

5.2.1 Demographic Data 

I Male   ■ Female 

Figure 14. Gender Ratio 

In this evaluation, 31% students are female and 69% are male (Figure 14). In addition, as 

we can see from the figure 15, we got 39% students were graduate students and 61% 

were undergraduate, in which 8% were freshmen, 15% were sophomore, 23% were junior 

and 15% were senior. 
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Junior 
23% 

Figure 15. Students' Educational Levels 

Linear Algebra 
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6 - 
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 HS     ■ 

  
■ No 

 H           at- EYes 

mm 
0 - 

Algebra 

Fieure 16. ResDonses of Question 1 and Question 2 

Responses of questions 1 and 2 show that 6 students learned linear algebra and 7 students 

did not. However from the result of the pre-test, showed in Figure 17, only 1 student was 

able to correctly solve question no.5 in the pre-test, which indicates that even those who 

had linear algebra background do not have competent skills in this domain. 
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Gave up 

■ Incorrect 

■ Correct 

Ql Q2 Q3 Q4 Q5 

Figure 17. Result of Pre-test 

Figure 17 shows that the participants gave up easily on the harder problems. Most 

students were able to successfully solve question 1 in the pre-test with the exception of 1 

student. And about 80 % of the participants solved problem 2 correctly. Yet only 55% of 

them could correctly solve problems 3 and 4 and nearly 80% of the participants gave up 

on the last problem. 

When the participants finished the pre-test, they were allowed to play MatriX for couple 

of hours over three days (average 3 hours in total) and then were invited back for a 

post-test. The following table shows the questions in the post-test. 

Table 8. Post-test Interviews Questions 

Question 1 

How easy was it to figure out the rules of the game? 

1-Very easy       2-easy       3-neutral       4-difficult       5-very difficult. 
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Question 2 

How do you describe your play experience? 

Question 3 

To what extent was the feedback provided in the game helpful? 

1-Very helpful       2-helpful       3-neutral       4-not helpful at all 

Question 4 

Do you think the game presents you with the right level of problems? 

1- problems were at the right level 

2- problems were too easy 

3- problems were too hard 

Question 5 

What would be a good change to the game to make it more appealing to you? 

Question 6 

Please try to solve the following equations or sets of equations. 

i.     3x-5 = 4 

..(5x + 3y = 27 
n\2x + y = 10 

(Sx + 3y + 2z = 17 
i.|3x + 2y + 2z= 13 

2x + y + 2z = 10 
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1 = 1 
l + n = 3 

</ + 3m + 2n + 4p = 15 
m + n + p = 8 

•(*! i :l)■©-© 
Besides some new questions, the math problems in the post-test were slightly different 

from the problems in the pre-test (except the problem 5), but still in the same difficulty 

levels. The problem 5 had no change as most of them gave it up in the pre-test. 

The following figure shows the students' performance in the post-test. 

Gave up 

■ Incorrect 

■ Correct 

Figure 18. Result of Second Test 

As seen in Figure 18, the correction rate of the problems 2 and 4 increased slightly, and 

the correction rate of problem 5 changed from 9% to 23%. And the gave-up rate 

decreased significantly for problems 3, 4 and 5, which is a good indication in itself. On 
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the other hand, the correction rate for the problem 3 dropped by 15%. These results made 

us eager to look closer at the collected data which lead us to interesting results. 

Looking at the solution steps, we found that although the game might have improved the 

desired operations, it did not help the students improve their calculation skills. To remove 

this interfering factor, we asked those students to take the post-test again while allowing 

them to use a special version of the game as a calculator. 

Figure 19. The Screenshot of the Special Version 

As seen in Figure 19, we replaced the smart hint button with a redo/undo button, which 

allows the students to view all the steps they take. When the student finishes a level, the 

game would not go to the next level until the student clicks on the next button. 

43% of the students agreed to retake the test. The new results are shown in Figure 20. 
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Gave up 

l Incorrect 

I Correct 

Ql Q2 Q3 Q4 Q5 

Figure 20. Results of the Second Post Test 

As we can see from Figure 20, the correction rates of the problems 3, 4 and 5 

significantly increased, which proves our assumption. 

We have also developed a post survey to ask about the participants' game experience. The 

results of the survey are shown in Table 7. The first question is concerned with the user 

interface, as mentioned earlier; we would like to know that if the game's user interface 

was intuitive and user friendly. 39% of students thought that it was easy to figure out the 

game rules through the interaction with the user interface. However there were still 38% 

of the students who criticized the interface and felt that it was not intuitive enough and 

asked for more directions. 
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Figure 21. How Easy to Figure Out the Rules 

The second question in the survey is concerned with the general game experience. The 

results are shown in Figure 22. 

Fieure 22. Responses to Question 2 in the Post-test 
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From the above figure, we can see that the students got mostly a good game experience. 

Most of the participants stated that the game was interesting and fun. One participant said 

"the game was easy, informative, addicting and relaxing". However, 2 participants 

mentioned that they experienced a hard time at the beginning and one participant did not 

get the idea of the game at all. 

Question 3 is concerned with learning and knowledge transfer. The results are shown in 

the Figure 23. Most participants believe the game was helpful. 

Figure 23. Responses to the Question 3 

Question 4 is more concerned with adaptation and if the pedagogical module was able to 

choose the right levels for the students. The results are shown in Figure 24; 77% of 

students believe that the game presented them with the right level of problems. However 

23% of the students complain that the levels were too hard. 
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E No 
Too hard 

3 

23% 
23% 

Figure 24. Responses to Question 4 

More Animation 

Show XYZ symbols at top or bottom 

Better interaction response 

Interface to choose levels 

Undo button 

No change 

More easy levels 

More detailed tutorial 

More levels 

Display the result longer 

Figure 25. Responses to Question 5 

Figure 25 shows the responses to question 5, which asked about the participant's opinion 

to enhance the game. Most participants requested a more detailed tutorial in the game in 

addition to adding more levels. Some students would like the freedom to choose the 

levels they would like to play. Some mentioned that the game should have some 

animation as the automatic row switching sometimes would confuse them. 
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Chapter 6 Conclusion 

Matrix is an intelligent educational game developed for the purpose of this thesis to teach 

students how to solve systems of linear equations using matrices and improve their 

problem solving skills. This game consists of 4 modules - a domain module, a student 

module, a pedagogical module and a presentation module. Matrix utilized a fuzzy system 

in the pedagogical module to guide the adaptation process. The fuzzy system was 

embedded in an Artificial Neural Network that was not fully utilized in this work. The 

important achievement of this thesis is the implementation of an automatic solver that 

solves a system of linear equation problems instantly and helps the pedagogical module 

to provide smart hints. 

Matrix was tested by 13 students from Columbus State University. The study showed 

interesting results and provided a proof on the efficiency of the fuzzy pedagogical module. 

Matrix was well perceived by the students although more features are needed to be added 

to the game as part of the future work. Future works also include improving the player's 

experience through the design of a friendlier interface, adding a detailed tutorial and more 

levels. 
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