
www.manaraa.com

Columbus State University Columbus State University

CSU ePress CSU ePress

Theses and Dissertations Student Publications

8-2014

An Adaptive Educational Game To Help Students Learn How To An Adaptive Educational Game To Help Students Learn How To

Solve Systems Of Linear Equations Solve Systems Of Linear Equations

Wang Zhang

Follow this and additional works at: https://csuepress.columbusstate.edu/theses_dissertations

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Zhang, Wang, "An Adaptive Educational Game To Help Students Learn How To Solve Systems Of Linear
Equations" (2014). Theses and Dissertations. 167.
https://csuepress.columbusstate.edu/theses_dissertations/167

This Thesis is brought to you for free and open access by the Student Publications at CSU ePress. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of CSU ePress.

https://csuepress.columbusstate.edu/
https://csuepress.columbusstate.edu/theses_dissertations
https://csuepress.columbusstate.edu/student
https://csuepress.columbusstate.edu/theses_dissertations?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://csuepress.columbusstate.edu/theses_dissertations/167?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

www.manaraa.com

AN ADAPTIVE EDUCATIONAL GAME TO HELP STUDENTS LEARN

HOW TO SOLVE SYSTEMS OF LINEAR EQUATIONS

Wang Zhang

u,u.uUUUUu»u»HilM»uUul.1ii.1.,.»i.mm„iM,Uiiu

www.manaraa.com

Columbus State University

The College of Business and Computer Science

The Graduate Program in Applied Computer Science

An Adaptive Educational Game to Help Students Learn

How to Solve Systems of Linear Equations

A Thesis in

Applied Computer Science

by

Wang Zhang

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

August 2014

2014 by Wang Zhang

www.manaraa.com

I have submitted this thesis in partial fulfillment of the requirements for the degree of Master of
Science

V/z 1 7 / zonf
Date Wang Zhang

We approve the thesis of Wang Zhang as presented here.

%! 24 / tom
Date Rania Hodhod, Ph.D.

Assistant Professor of Computer Science,
Thesis Advisor

^/-1^9/^jollf

Date

^/X/l/^kPC *-v_

Shamim Khan, Ph.D.
Professor of Computer Science

8/2*?/z<7££
6 ate igo ObandoT^D.

Associate Professor of Computer Science

www.manaraa.com

Abstract

Educational games have been proven to be effective in developing problem solving skills

in well-defined domain, such as Math and Physics. In this thesis, an educational game

called Matrix was developed to foster problem solving skills in the domain of linear

algebra, particularly solving a system of linear equations. Matrix is an adaptive

educational game that uses intelligent tutoring modules to guide the student's learning

process and provide feedback based on the student's performance. These modules are

domain module, student module, pedagogical module and presentation module. The

domain module contains all the concepts the student needs to learn and an automated

solver for linear equations that adopts the rules of Gaussian Elimination. The student

module records the student's performance and provides the pedagogical module with the

required information about the student's current skills. The pedagogical module uses the

automated solver to assess the student's performance on the designated task and a

neuro-fuzzy system to decide on the next proper game level for the student. Matrix has

been evaluated by 13 students from the Columbus State University. The results show that

Matrix was well perceived by the students and that they were able to transfer the skills

learned in the game to real world problems on systems of linear equations.

www.manaraa.com

Acknowledgements

I would like to thank everyone who has helped and supported me with this thesis. First of

all, I would like to thank my supervisor, Prof. Rania Hodhod, for her professional and

patient guidance. This thesis would not be, without her help. Particularly, I would like to

thank all the students who participated in the evaluation study. And thank all the faculty

and staff in the TSYS School of Computer Science, especially Dr. Wayne Summers,

Dr. Shamim Khan, Dr. Rodrigo Obando and Ms. Dianne Phillips. Finally, I would like to

acknowledge, I am so thankful and grateful to my family members, especially my parents,

for supporting me all the time throughout my study in Columbus State University.

www.manaraa.com

Ill

Table of Contents

Abstract.

Acknowledgements II

Table of Contents i"

List of Figures. , VI

List of Tables viii

Chapter 1 Introduction 1

1.1 Introduction 1

1.2 Game and Education 2

1.3 Domain of Interest 2

Chapter 2 Related Work 4

2.1 Problem Solving Skills 4

2.2 Serious Games 5

2.3 Fuzzy Systems 6

Chapter 3 Design of MatriX 8

www.manaraa.com

IV

3.1 Overview 8

3.2 Game Design 8

3.3 Domain Module 9

3.4 Student Module 14

3.5 Pedagogical Module 15

3.6 Presentation Module 21

3.7 Objective of Game Design 24

Chapter 4 Implementation of MatriX 25

4.1 Overview 25

4.2 Domain Module 29

4.3 Student Module 36

4.4 Pedagogical Module 37

Chapter 5 Evaluation 49

5.1 Goal. 49

5.2 Experimental Testing 50

www.manaraa.com

Chapter 6 Conclusion 61

References 62

www.manaraa.com

VI

List of Figures

Figure 1. The GUI Design 9

Figure 2. The Difficulty Curve 14

Figure 3. Step Membership Functions 17

Figure 4. Time Membership Functions 17

Figure 5. Level and Output Membership Functions 18

Figure 6. 3D Output Graph of the Fuzzy System 20

Figure 7. The Screenshot of The Game Level Screen 22

Figure 8. Performing An Elementary Operation on A Row 23

Figure 9. A Screenshot of the Hint Message Box 23

Figure 10. Architecture of Matrix 25

Figure 11. Domain Module Structure 29

Figure 12. Getting Inputs from Previous Nodes 38

Figure 13. The Structure of the Neuro-fuzzy System 39

Figure 14. Gender Ratio 51

www.manaraa.com

VII

Figure 15. Students' Educational Levels 52

Figure 16. Responses of Question 1 and Question 2 52

Figure 17. Result of Pre-test 53

Figure 18. Result of Second Test 55

Figure 19. The Screenshot of the Special Version 56

Figure 20. Results of the Second Post Test 57

Figure 21. How Easy to Figure Out the Rules 58

Figure 22. Responses to Question 2 in the Post-test 58

Figure 23. Responses to the Question 3 59

Figure 24. Responses to Question 4 60

Figure 25. Responses to Question 5 60

www.manaraa.com

VIII

List of Tables

Table 1. Level Difficulty 13

Table 2. Rules Used In the Fuzzy System 18

Table 3. Members of Level for Domain Module 30

Table 4. Failure Rate of the Algorithm 36

Table 5. Members of Level for Domain Module 36

Table 6. Compute Methods 40

Table 7. Pre-test Interviews Questions 50

Table 8. Post-test Interviews Questions 53

www.manaraa.com

Chapter 1 Introduction

1.1 Introduction

Problem solving skills helps us throughout our lives; it is something we use every day.

We encounter problems, no matter how big or small, which require problem solving skills

to deal with them (Steve K. Robbins, 2013). In fact mathematics can be seen as a useful

tool to solve daily problems. We can convert our daily problems into math problems and

also convert math problems into what we see in daily life, such as puzzles and games

(Bonnie Averbach, 2012).

No matter whether it is a math problem or other kind of problem, we improve our

problem solving skills through education. Education is a form of propagation and

learning, through which, knowledge, skills, and life experience are learned or transferred.

With today's technology we can make the process of learning more fun. Problem solving

skill is as any other skill that requires practice in order to be developed and used

efficiently. Educational games provide a good platform to improve problem solving

skills.

For the purpose of this thesis an adaptive educational game called Matrix was developed.

Matrix aims to help students to improve their skills using the rules of the elementary

matrix operations to solve systems of linear equations. Matrix consists of 4 modules - a

domain module, a student module, a pedagogical module and a presentation module. The

domain module contains the rules and the problem-solving strategies that the students

need to learn. The student module tracks students solving steps and reflects the students'

skills. The pedagogical module provides smart hints that tell the student what the next

step is when the student does not advance and also determines the next level the student

Chapter 1 - Introduction

www.manaraa.com

should go to after they finish a level. The presentation module provides the GUI for the

students. Matrix was implemented using Microsoft XNA Game Studio 4.0 and

programmed in the C# language.

1.2 Game and Education

People have learned from games since ancient times. When we play a game, we must

learn and adapt to the rules of the game in order to get to the challenging goal, which is

the process by which we learn new knowledge and skills. Before the invention of

computers, we played card games to learn Arithmetic and played chess to learn strategies.

After the invention of computer games, the variety of educational games became

significantly rich. We can find a list of hundreds or thousands of new educational games

in every decade. The tremendous number of games makes some people fear that games

are bad educators, which have actually been proven false by successful educational

games.

Intelligent educational games allow a personalized learning experience to each individual

student. Those games can provide instant and individualized feedback by using Artificial

Intelligence techniques that allow the game to reason, plan, and adapt to each student

(Rania Hodhod, 2010).

1.3 Domain of Interest

When I was learning linear algebra I spent a lot of time practicing the Gaussian

elimination, which is the most widely used method to solve systems of linear equations,

which is one of the most basic and most used methods in linear algebra and is also used

to find the rank, the determinant and inverse matrix of a matrix. Accordingly Gaussian

Chapter 1 - Introduction

www.manaraa.com

Elimination is considered an important technique in linear algebra.

Gaussian Elimination uses three types of elementary matrices row operations: Row

switching, row multiplication and row addition. Row switching is exchanging a row in

the matrix with another one, row multiplication is multiplying each element in a row in

the matrix by a non-zero constant and row addition is to replace all elements in a row

with the sum of this row with another row in the matrix. Gaussian Elimination uses these

operations to transform the coefficient matrix to be a triangular matrix while the constant

vector is applied by those transformations as well (Robert J. Lopez, 2010). Matrix aims

to develop problem solving skills in students by providing tasks that help them exercise

the elementary matrix row operations which are the core of the Gaussian Elimination

technique.

Chapter 1 - Introduction

www.manaraa.com

Chapter 2 Related Work

2.1 Problem Solving Skills

Jennifer Krawec et al. (2012) published a paper that addresses the effects of cognitive

strategies titled "Instruction on Knowledge of Math Problem-Solving Process of Middle

School Students with Learning Disabilities". This study investigated the effectiveness of

a cognitive strategy intervention called Solve It! on students' knowledge of math

problem-solving strategies. Solve It! was designed to improve the math problem solving

skills of middle school students who had learning disabilities. This study followed the

Mayer's (1985) model of the problem-solving process that identifies four sequential

phases: Problem translation, problem integration, solution planning and solution

execution. The researchers collected data over the course of two years with two separate

samples from 7th and 8th grade students. They composed a Math Problem-Solving

Assessment to measure the students' skills that contains a structured interview consisting

of two word problems and thirty four items selected from a longer version developed for

research purpose. The results indicated that the students who got trained on Solve it! were

able to use more strategies to solve mathematical word problems than those students who

didn't.

Robert W. Maloy et al. (2010) published an article that describes the study of a

web-based mathematics tutoring systems, called 4MALITY, with one hundred and twenty

five fourth grade students and their teachers. The 4Mality is an online tutoring system

that was used to promote inquiry learning and problem solving among elementary and

middle school students. This system uses a hint model to organize suggestions and

strategies along two axes - problem solving steps and learning style preferences. The

Chapter 2 - Related Work

www.manaraa.com

gg

researchers introduced five steps in the problem-solving axis, which was originally drawn

from the work of George Polya (1973): Hint Level 1) What kind of question is this?; Hint

Level 2) What is the question asking for?; Hint Level 3) What do I already know that will

help solve the problem?; Hint Level 4) What is my plan for solving the problem?; And

Hint Level 5) How do I know I have solved the problem? They found a mean gain of

25.51% in test scores from pre-test to post-test among all students.

2.2 Serious Games

Damien Djaouti et al. (2011) stated, in their article titled Origins of Serious Games, that

"Serious Game" was not a new phenomenon. They believe that the very first video games

were not designed purely for entertainment. The first serious games were not necessarily

based on a digital support. While there were many games not labelled as serious games,

they are the closest ancestor to today's serious games. In this work the researchers

compared the numbers of serious games released each year, and found out that the first

high peak occurred in 2000's and 2002 was the starting point of the current wave of

serious games. The researchers pointed out that the number of serious games released in

2007 was 230, which was twice the number in 2003 that was the highest number before

2007. They stated that before 2002 education had the highest percentage, 65.8% partition

of serious games; however this number decreased to 25.7% after 2002 and advertising

games reached the top with 30.6% of the games.

Irene Polycarpou et al. (2010) developed an educational game called Math-City, which

was a simulation-based game for K-12 students to improve their achievement in

Mathematics. In the game, students can create and maintain their own city. They can add

their own residential, commercial and industrial buildings in the game. The goal of the

Chapter 2 - Related Work

www.manaraa.com

game is to create a city that has the maximum happiness of the residents, which includes

five factors - pollution, police, fire, health and big building. In the game, the students

need to earn their money to develop the city by answering mathematical problems. The

teachers who participated in the game filled out a survey, and gave mostly positive

feedback.

2.3 Fuzzy Systems

Regina Stathacopoulou (2006) did a study in her thesis about a neural network-based

fuzzy modeling approach to assess student's learning characteristics and update the

student module in Intelligent Learning Environments. She designed a three-stage

diagnostic model, in which the first state is the fuzzification state, the second is the

inference stage and the third is the defuzzification state. The fuzzification stage represents

teachers' subjective linguistic description of a students' behavior. The inference state

represents teachers' reasoning in categorizing students qualitatively according to their

learning characteristics. And the deffuzification state represents teachers' final decision in

classifying a student in one of the predefined linguistic values of the characteristic. This

system has 3 fuzzy inputs and they are the student's total time on the scenario, the

number of attempts to find the correct forces and the number of random mouse moves.

And the output is how much the student is interested in the scenario. The experimental

test result shows that the proposed model accurately evaluated students.

Shahriar Husainy (2013) did a study concerning the development of a Fuzzy Inference

System for identifying likely student dropouts at Columbus State University. This system

was developed and evaluated by utilizing historical students' Retention, Progression and

Graduation (PRG) data from Columbus State University Information and Technology

Chapter 2 - Related Work

www.manaraa.com

Services. He used a top-down and a bottom-up approaches to perform the knowledge

extraction for the system. The top-down approach was used to extract data from the

knowledge gained from interviewing domain experts for forming the rules. And the

bottom-up approach was used to analyze the weights of an ANN and derive additional

rules for the system.

Chapter 2 - Related Work

www.manaraa.com

8

Chapter 3 Design of Matrix

3.1 Overview

This chapter focuses on the educational game Matrix developed for the purpose of this

thesis. The rules of the game are simply the elementary matrix operations, which are row

addition, row multiplication and row swapping. The goal of the game is to use those

operations to get an identity matrix. Matrix is an intelligent educational game in the

sense that it can track the student's performance and provide individualized feedback.

MatriX uses four modules to achieve this: a domain module, a student module, a

pedagogical module and a presentation module. The domain module is the main

component of the game and is where the game rules are applied. The student module

records the student's performance and helps providing a personalized learning process. In

this project, the student module captures the students' actions, cognitive processes and

provides that information to the pedagogical module. The pedagogical module uses a

neuro-fuzzy system to provide adaptation to individual students playing the game.

Adaptation allows the presentation of a sequence of game levels that fits the student's

skills, i.e. the student doesn't need to play all the game levels in the game. In addition the

pedagogical module provides the students with smart hints that help the student to

proceed with his learning activity when he gets stuck.

3.2 Game Design

MatriX is a puzzle game, which applies the rules from the Gaussian Elimination

technique, performing a sequence of elementary operations on the associated matrix of

coefficients. For example we can derive the system of linear equation like

Chapter 3 - Design of MatriX

www.manaraa.com

r x + 3y = 8 /X 3 0\./*\ /8\
\s + Ay + 2z = 3 to be like I 1 4 2 ■ I y 1 = I 3 1, and then we associate the
U + 2y + 2z = 5 \X 2 2/ W \5/

coefficient matrix with the constant vector and get an augmented matrix like

'13 0
14 2
,12 2

8\
3 I. This augmented matrix can be easily represented in a game where the
5/

students can practice the different operations of the Gaussian Elimination technique as

shown in figure 1.

Figure 1. The GUI Design

The players just need to drag and drop or click on the rows to perform the different

operations to reach the identity matrix.

3.3 Domain Module

3.3.1 Concepts

The main concept in the domain module is row reduction in a matrix using elementary

operations. The domain contains all the problems the student needs to solve and all the

Chapter 3 - Design of Matrix

www.manaraa.com

 10

concepts the student needs to learn about. There are three main types of operations the

student needs to understand - row addition, row multiplication and row swapping. The

row addition is to add one row onto another, the row multiplication is to multiply a row

by a non-zero constant, and the row switching is to swap two rows, for example:

• Row addition

Row Multiplication

3\ k* RI - RI (k*o) flk 2k 3k

2 > 3 2
3

1
4

Row Switching

The goal of the Gaussian elimination is to transform a matrix to be in an echelon form,

which means that all entries below the main diagonal entries are 0. For example:

However, in this game the goal is to transform the coefficient matrix to be an identity

matrix so that the student can directly see the roots of the system of linear equations by

looking at the constant vector at the right side of the augmented matrix. For example, the

Chapter 3 - Design of MatriX

www.manaraa.com

 ^ n

form shown below is a solved matrix, through which we can see the roots are 11,-1 and

-2.

10 0 11
0 10 -1
0 0 1 -2

3.3.2 Elimination with matrices

An automated solver has been implemented to complement the domain module. This

solver can provide the solution to any solvable 2d, 3d or 4d system of linear equation

using matrix operations and return the list of steps required to solve this particular

problem. The solver uses an algorithm derived from Gaussian Elimination. The solver

doesn't come up with the best solution, as this is an NP problem, which might use even 1

hour to solve a 3 by 3 matrix, not to mention the 4 by 4 matrix problems. However, the

solver aims to provide the next step from any current step, which proved to be ab

excellent way to avoid storing solutions to each problem in the game and, most

importantly provide high flexibility as the student does not have to follow certain

sequence of rules to solve the problem in hand.

For simplification purposes, Matrix does not allow the use of fractions; therefore all

numbers in the solution must be integers. For this reason the solver cannot directly use

the algorithm of the Gaussian Elimination, which uses a lot of fractions. Also note that

the base case of the adapted algorithm is the coefficient matrix reduced to an identity

matrix rather than a reduced row echelon form.

3.3.3 Level Difficulty and Level Design

Problems with different difficulty levels were designed for the purpose of this game. In

the meantime, Matrix is not set to generate new problems but this is easy to be

Chapter 3 - Design of Matrix

www.manaraa.com

 ^ 12

incorporated in Matrix. All what it needs to achieve this is to allow the automated solver

to use down-top problem solving approach instead of using the top-down approach. This

part is left as future work as it was not required to fulfill the requirements of this thesis.

There are different ways that can be approached in order to design game levels (problems)

with different difficulties. One way is to randomly choose a couple of numbers as the

coefficient of the systems of linear equations. However, using this approach makes it hard

to manage the level difficulties and requires us to check the rank of each matrix to make

sure it is solvable. Another approach, which is adopted in this work, applies elementary

matrix operations on the identity matrix to generate a new problem. This way we could

easily control the difficulty level by controlling the number of steps of elementary

operation on the matrix to generate the new problem. This is a process similar to mixing

up a Rubik Cube; the more times we turn any side of the cube, the more difficult it would

be to solve it.

For example, assume we have the two transformations below,

'1 0 0\ /l 0 0^
0 1 0]->(l 1 0

.0 0 1/ VO 0 V
Transformation 1

f\ 0 (T
0 10

.0 0 1>

'1 0 0^
110

.0 0 1/

'1 0 0N

110
a l h

Transformation 2

It can be seen that the result of Transformation 1 is easier than the result of

Transformation 2, because Transformation 2 uses more steps than Transformation 1. The

dimension of the matrix is also a great factor to define the difficulty level. Solving a 3-D

matrix seems to be more difficult than solving a 2-D one, even if both problems require

Chapter 3 - Design of Matrix

www.manaraa.com

13

the same number of steps in the solution.

The pedagogical module is responsible for providing adaptation that helps the student to

experience an appropriate learning curve. A reasonable difficulty curve can keep the

learning experience balanced to the student. For that purpose, we designed 12 easy levels,

12 medium levels and 8 hard levels and used numbers from 0 to 100 to represent the

difficulty level (this will be converted to 0-1 to be used as a membership function in the

student module). The following table demonstrates the distribution of the difficulty level

of the problems.

Table 1. Level Difficulty

Level No Difficulty Degree Difficulty

0-11 (0,25] Easy

12-23 (25,75] Medium

24-31 (75,100] Hard

The following formula is used to determine the difficulty level of each problem,

l-la (ym-mQ) ° + m0

In this formula, m0 represents the lower bound of the difficulty level of the current

problem; m represents the upper bound of the difficulty level of the current problem; n

represents the number of levels in the current level difficulty; / represents the current

level number and /0 represents the initial level number of the current difficulty level.

Chapter 3 - Design of MatriX

www.manaraa.com

14

15 20

Game Levels

Figure 2. The Difficulty Curve

Figure 2 shows the difficulty curve obtained from the above formula. The x-axis

represents the level number of each level, and the y-axis represents the level difficulty

degree. As we can see every time we enter a new level difficulty, such as from easy to

medium or from medium to hard, the slope is increasing gently which allows the student

to fit into the new difficulty level smoothly when advancing from one level to another.

3.4 Student Module

The student module is a crucial part of MatriX. The student module records the

performance and learning ability of the student, which will be used by the pedagogical

module in MatirX. Accordingly, the pedagogical module would know what steps did the

student take to solve the problems, how much time the student used to solve the problems

and the current difficulty level the student is on, so that the pedagogical module can

automatically choose the next appropriate level or problem that fits the student most.

Moreover, the pedagogical module can give the right level of smart hints to the student

Chapter 3 - Design of MatriX

www.manaraa.com

15

when the student gets stuck.

3.5 Pedagogical Module

The pedagogical module is another essential module in Matrix. It provides hints about

the next step when the student gets stuck. Most importantly, it uses a fuzzy system of

rules to decide on the difficulty level of the next problem to be presented to the student.

The pedagogical module requests information from the domain and the student modules

to provide an individualized learning process accordingly.

3.5.1 Fuzzy System Design

In order to select the right difficulty level for the student, a system of fuzzy rules was

developed that evaluates the student's performance. The information collected from the

student module represents the different premises of the rules and the output represents the

difficulty level of the next problem. The rules were designed to be used in a neuro-fuzzy

system that has functions make it be able to learn from the student. Unfortunately the

learning functions were turned off in this work because of the abundance of training data.

The following section describes the neuro-fuzzy system in detail.

- Input/Outputs

The neuro-fuzzy system has 3 input layers and 1 output layer. The inputs include: 1- Step:

the value of Step is defined by the difference between the number of steps taken by the

automated solver to solve the problem and the number of steps taken by the student to

solve the same problem divided by the number of steps taken by the automated solver to

solve the problem. If we have a problem with expected step count to be 3 and the student

used 4 steps then the value of Step would be 1/3. 2- Time: The value of time is defined to

Chapter 3 - Design of Matrix

www.manaraa.com

16

be the time the student expected to use dividing the comparison between the time the

student expected to use and the time taken by the student. 3- Level: The value of Level is

defined by the difficulty degree of the current game level. The following shows the

formulas used to compute each input

Step =

f: I userStepCount - expectedStepCount

V expectedStepCount

Time =
userTime - expectedTime

expectedTime

{userStepCount < expectedStepCount)
(userStepCount > 2 * expectedStepCount)

(Other)

(userTime < expectedTime)
(userTime > 2 * expectedTime)

(Other)

■ Level = difficulty degree of the current game level

The output of the neuro-fuzzy system is the difficulty degree of the next problem. All the

values mentioned above are clamped in the range from 0 to 1. For example, if the student

used three times of the expected time, the value of Time is one. This can be attributed to

the fact that the expected performance varies from one problem to another.

Membership Functions

Each of the input variables along with the output variable is represented with a

membership function as seen in Figure 3, 4, 5 and 6. The Step variable has three fuzzy

values: fast, medium and slow. A triangular and trapezoidal membership functions are

used to represent those values as seen in Figure 3.

Chapter 3 - Design of Matrix

www.manaraa.com

17

input variable 'stepDifT

Figure 3. Step Membership Functions

The Time variable has three fuzzy values: fast, medium and slow. A triangular and

trapezoidal membership functions are used to represent those values as seen in Figure 4.

input variable time'

Figure 4. Time Membership Functions

For the level there are also 3 membership functions, easy, medium and hard. Their ranges

are as in the following figure. These membership functions are used as input membership

function for level input and as output membership function for level output as well. The

Chapter 3 - Design of MatriX

m ■mimMmmmmmmmm^m^^m^^m

www.manaraa.com

18

membership functions for the levels and outputs are used to represent those values as

seen in Figure 6.

Membership function ptots

input variable "tevef

Figure 5. Level and Output Membership Functions

Fuzzy Rule Design

The designed rules considered all the possible combinations of inputs as shown in Table

2.

 Table 2. Rules Used In the Fuzzy System

Rule No. Rule

If (stepDiff is large) and (level is easy) then (outputl is easy)

If (stepDiff is medium) and (time is Slow) and (level is easy) then
(outputl is easy)

If (stepDiff is medium) and (time is medium) and (level is easy)
then (outputl is easy)

If (stepDiff is medium) and (time is Fast) and (level is easy) then

(outputl is medium)

If (stepDiff is Small) and (time is Slow) and (level is easy) then

(outputl is easy)

Weight

1

Chapter 3 - Design of Matrix

www.manaraa.com

19

10

11

12

13

14

15

16

17

18

19

20

21

If (stepDiff is Small) and (time is medium) and (level is easy) then
(output 1 is medium)

If (stepDiff is Small) and (time is Fast) and (level is easy) then
(output 1 is medium)

If (stepDiff is large) and (time is Slow) and (level is medium) then

(output 1 is easy)

If (stepDiff is large) and (time is medium) and (level is medium)
then (outputl is medium)

If (stepDiff is large) and (time is Fast) and (level is medium) then
(outputl is medium)

If (stepDiff is medium) and (time is Slow) and (level is medium)
then (outputl is medium)

If (stepDiff is medium) and (time is medium) and (level is medium)
then (outputl is medium)

If (stepDiff is medium) and (time is Fast) and (level is medium)
then (outputl is hard)

If (stepDiff is Small) and (time is Slow) and (level is medium) then
(outputl is medium)

If (stepDiff is Small) and (time is medium) and (level is medium)
then (outputl is hard)

If (stepDiff is Small) and (time is Fast) and (level is medium) then

(outputl is hard)

If (stepDiff is large) and (time is Slow) and (level is hard) then
(outputl is medium)

If (stepDiff is large) and (time is medium) and (level is hard) then
(outputl is hard)

If (stepDiff is large) and (time is Fast) and (level is hard) then

(outputl is hard)

If (stepDiff is medium) and (level is hard) then (outputl is hard)

If (stepDiff is Small) and (level is hard) then (outputl is hard)

Chapter 3 - Design of Matrix

www.manaraa.com

20

- Level Selection

The fuzzy system uses the 3 inputs (Step, Time, and Level) to figure out the appropriate

difficulty degree of the next problem. And then the pedagogical module selects a problem

that has the closest value to the resulting difficulty degree. As seen in Figure 6, the z-axis

represents the difficulty of the output, the x and y axes represent Time and Step

respectively. When the inputs are in a particular range the output will remain at 0.1, 0.5

and 0.8. This means that in this certain range of inputs the output remains the same

(undesired output as we need a different output each time). Accordingly, the pedagogical

module selects a game level that has the difficulty degree in the resulting difficulty level

while allowing variations of problems.

Figure 6. 3D Output Graph of the Fuzzy System

Chapter 3 - Design of MatriX

www.manaraa.com

21

3.5.2 Smart Hint

A smart hint in this game is the next step that the pedagogical module gives to the student

when the student gets stuck, which is the responsibility of the pedagogical module. The

pedagogical module uses the automated solver to provide the student with the next step.

Whenever the student takes a new step in the solution, the game records the step and

compares it along with all previous steps taken by the student to the solution generated by

the automated solver. If the steps taken by the student did not match the steps generated

by the automated solver the pedagogical module uses the current student's step as a new

problem and work on solving it using the automated solver so that it can provide the

student with the next step. The student is free to apply that proposed operation or work

his own.

3.6 Presentation Module

The presentation module provides the interface that allows the student to interact with the

game and perform the elementary matrix operations. It also shows them hints when

requested, in addition to time and number of steps they took to solve the current problem.

Chapter 3 - Design of Matrix

www.manaraa.com

22

Figure 7. The Screenshot of The Game Level Screen

The interface shows the coefficient matrix in the blue box and the constant vector in the

green box. The student can perform a row addition by dragging a row and dropping it

onto another row. The student can perform a row multiplication by right-clicking on a

row and clicking on the number pad. The row switching operation is performed

automatically by the game. On the right side of the screen there are two labels to show

the number of moves (steps) and the time elapsed for the current problem. The smart hint

button is shown below these two labels.

Chapter 3 - Design of Matrix

www.manaraa.com

23

Figure 8. Performing An Elementary Operation on A Row

If the student clicks on the hint button a message box will shows up telling the student

what the next step should be. The student can choose to follow the hint or not.

Figure 9. A Screenshot of the Hint Message Box

Chapter 3 - Design of Matrix

www.manaraa.com

mm

24

3.7 Objective of Game Design

The objective of the game design is to improve the student's solving skills in the domain

of systems of linear equations using elementary matrix operations. The aim was to

develop intelligent tutoring modules that adapt to the student and help the student learn

the skills. The game should be able to provide an individualized learning process to each

student in which they experience a personalized learning path. The graphical user

interface maps to the actual problems' representation in a way that should ease the

transfer of skills from the game to real world problems.

Chapter 3 - Design of Matrix

www.manaraa.com

25

Chapter 4 Implementation of Matrix

4.1 Overview

This Game is implemented using Microsoft XNA Game Studio 4.0 and programmed in

the C-Sharp language. Microsoft XNA Game Studio is a video game developing platform

based on the .Net Framework 4.0, which enables developers to develop video games for

the Windows PC, Xbox 360 and Windows Phone (Aaron Reed, 2010). All the

implemented modules in Matrix were implemented without using any third-party

libraries, so that Matrix can run as a standalone application. To run Matrix, users only

require the .Net Framework 4.0, XNA Framework 4.0, and Games for Windows Live

installed on their PC.

4.1.1 Architecture

Domain Module

MatrixGameContent
• Game Levels

MatrixSolver
• Elimination

Algorithm

MatrixGame
ContentPipeline |(StaitUp Project)

Level
ModelType
• Solution
• Levellnfo

MatrixGame

Student Module

~W~

ModelType
• Fuzzy Status

MatrixGame
(Startup Project)
• Tutorial
• Smart Hint
• Handle

LevelFinishEvent

PerformanceEvaluator

Fuzzy System

Pedagogic: 1 Module

|:

MatrixGame (Startup
Project)
• Track Student's

Steps
• TimeSpan
• Current level

difficulty

ModelType
• Step

MatrixGameContent
• Ul Contents

Presentation Module

MatrixGame (Startup Project)
• Screens
• Handle Inputs

J
Figure 10. Architecture of MatriX

Chapter 4 - Implementation of MatriX

www.manaraa.com

 26

Figure 10 shows the architecture of Matrix. The way the different modules interact with

one another is as follows: The domain module stores the problems as game levels and

also calculates and stores the solutions of these problems. The presentation module reads

the information of current level from the domain module and displays it on the screen and

handles the inputs of the students. The student module gets the students inputs from the

presentation module and tracks the students' performance. The pedagogical module

requests the student's information from the student module and content information from

the domain module upon which it determines the proper game level the student needs to

play next, finally the pedagogical module informs the presentation module to present that

level to the student.

The MatriX application consists of 6 projects - MatrixGame, ModelType,

MatrixGameContentPipeline, MatrixGameContent, MatrixSolver and

PerformanceEvaluator in which MatrixGame, ModelType, MatrixGameContentPipeline,

MatrixGameContent and MatrixSolver are the components of the domain module. The

jobs of each module cannot be done by only one project; this is because some data are

cross-referenced between modules. Meanwhile, the project MatrixGame and the project

MatrixGameContent are also parts of the presentation module. Most of the tasks required

by the student module are done by the Level class in the MatrixGame project, while the

tasks of the pedagogical module are done by a project called PerformanceEvaluator.

The project MatrixGame does the final tasks of each module. As for the domain module,

this project handles all the game logic, applies the domain rules. As for the student

module, it tracks the steps taken by the students when they are trying to solve a level,

record the time span. And as for the pedagogical module, it comprehends information

from the domain and student modules, gives smart hint and selects game levels. As for

Chapter 4 - Implementation of MatriX

www.manaraa.com

27

the presentation module, this project draws all the contents on the screen and manages

screens used for different purposes. This project is also the application entry point and is

built as an executable file.

The project ModelType is a part of the domain module, which contains the data structures

that are used by the modules, such as the problem the student is going to solve, and stores

the problem-solving solutions. As the domain module needs to communicate with other

modules, this project is also referred to by other projects (modules), such as student and

pedagogical modules.

The MatrixGameContent stores all the game assets such as textures and scripts. The game

needs to read all the data it needs from this Content project through the content pipeline.

The most commonly used types of assets are already supported by the XNA Game Studio,

in which the default content pipeline can process most of the game contents stored in the

hard drive. However, some of those contents are new to XNA, for example, level

information. Therefore we needed to implement our own content pipeline to import those

levels (system of linear equations problems) from the content project to the game. So the

MatrixGameContentPipeline project imports those level asset files, processes them,

converts them to a level information object, and passes it to the game.

The pedagogical module for this game needs to answer the student's request at any point

during the problem solving process and tells them what to do next, so this module gets

the solution from the MatrixSolver project, which is in the domain module and solves any

given system of linear equations in the form of an augmented matrix. The pedagogical

module is responsible for choosing the next game level for the student. The

PerformanceEvaluator is implemented for this purpose, in which there is a fuzzy system

Chapter 4 - Implementation of Matrix

www.manaraa.com

 28

that is in essence a neurofuzzy network. This module receives the student's performance

from the student module and gives the difficulty degree of the next level, and then selects

the next game level (problem) from the levels defined in the domain module. The

neuro-fuzzy network in this module does fuzzy reasoning and is capable of doing

back-propagation learning. However, we turned off the learning functions as we did not

have enough data to train this neuro-fuzzy system, which might cause enormous

inaccuracy if we leave the learning functions on.

Chapter 4 - Implementation of Matrix

www.manaraa.com

 ^_ 29

4.2 Domain Module

As mentioned above, the domain module stores the problems that students need to solve,

and applies the game rules, logic and the problem-solving skill that students need to learn.

Those jobs are done by five projects - MatrixGame, MatrixSolver, MatrixGameContent,

MatrixGameContentPipeline and ModelType.

4.2.1 Structure

Domain Module MatrixGameContent MatrixGame (Startup Project)

Level
Class

MatrixGameContentPipeline

LevellnfoWriter SolutionWriter
Class class

Matrix Solver

MatrixSolver
Class

ModelType

Level Info
Class

Step
Abatract Class

Solution
Class

RowMuitipiicationstep RowSwitchingStep RowAdditionStep
Class Class class

Figure 11. Domain Module Structure

As seen in Figure 11 the jobs of the domain module are allocated to these projects. The

Level class represents a problem the student needs to solve, which in this domain module

communicates with both the student and pedagogical modules.

Chapter 4 - Implementation of Matrix

www.manaraa.com

30

4.2.2 Game Level

The most important class is the Level class, which represents a game level. It refers to all

other projects, and manages the game logic and rules in addition to fulfilling the

functions of the game. The level has the following members that works for the domain

module.

Table 3. Mem bers of Level for Domain Module

Private

Field

Private

Field

Private

Field

Property

Name

levellnfo

matrixTiles

vectorTiles

ExpectedStepCount

Description

An instance of Levellnfo class in ModelType project.

It contains all the information of a level loaded from

the content asset, such as the matrix and constants of

the problem, the expected time use and the problem

solving solution.

The current matrix that is being operated on by the

student. This field is also used by the presentation

module to present the matrix to the student and

display the different operations the student's applying

to the matrix.

The current constants vector that is being operated on

by the student, and is the extension part of matrix.

This field is also used by the presentation module to

present any constants to the student.

Gets the expected step count of the current level from

the levellnfo instance.

Chapter 4 - Implementation of MatriX

www.manaraa.com

31

Property

Property

Method

Method

Method

Method

Event

ExpectedTimeUse

Is Won

DoRowAddition

DoRowMultiplication

Gets the expected time of the current level from the

levellnfo instance.

Gets the winning state of the current level; determines

if the player has won the current level (solved the

problem).

Performs a Row Addition operation on the current

matrixTiles and vector Tiles.

Performs a Row Multiplication operation on the

current matrixTiles and vector Tiles.

DoRowS witching

GetRestSteps

LevelFinishedEvent

Performs a Row Switching operation on the current

matrixTiles and vector Tiles.

Gets the solution for the rest of the steps the student

needs to take.

Occurs when the student has won the current level.

This event is handled by the MatrixGame instance.

4.2.3 Matrix Solver

For the purpose of this thesis, we implemented an algorithm that performs elementary

matrix operations to transform a matrix to an identity matrix. None of the existing

Gaussian Elimination algorithms such as partial pivoting elimination algorithms seem to

work for us. That was because, as discussed earlier, some new rules were added to the

Chapter 4 - Implementation of Matrix

www.manaraa.com

32

game as follows;

No fractions

• Rule Swapping is operated only when at least one row is reduced and only by the

computer automatically.

• The coefficient matrix should be transformed to an identity matrix instead of a row

echelon form.

The approach is to eliminate the maximum eliminable element in the row with maximum

number of non-zero entries all the time until the matrix is identity. The first step in the

process is to check if the given matrix is an identity matrix. If it is then return finish

computing. The next step is to check if we need to switch the rows. In this step, we apply

the following transformation.

'Oil

^31

a12

0

«32

Ol3
0
0

'<*23 0 0

c2

c3/
Gil a12 a13

*31 l32 C3/

In the example above the second row is switched with the first row as the second row has

the entry in the first column that is 1 and rest are Os. This process makes sure the

following form will never appear in the game.

'0 1 (T
0 0 1

,1 0 0,

Then we go to the first step of elimination, which is to find the row that has the maximum

number of non-zeroes. The row with the maximum number of non-zeroes will be the row

Chapter 4 - Implementation of MatriX

www.manaraa.com

 33

that is added on by another row. For example in the following matrix, row no. 2 will be

selected.

fd e 0\
[a b c)
VO / gj

However, in some cases we do not want to select the row that has the maximum number

of non-zeroes. For example in the matrix below, although the first row has the maximum

number of non-zeroes, it will not be chosen to be operated on by other rows. If we add

any of the rest of the rows on to the first row, the second entry on this row would not be

equal to 0 anymore. And that is want we need to avoid.

'air 0 a13 a14
N

0 a22 0 0
0 a32 a33 0
0 a42 0 a44/

For the following matrix, the first row can be chosen, because the fourth row can be

added to it and would not change the value of the 0 entry.

0 a. a. <axr u u13 u14

0 a22 0 0
0 a
0

32 a 33 0
0 0 a 4V

However in some cases you might not find any row that can be selected, such as the

following matrix:

0 a12 a13 a
a 21 0 a

14

23 a24
a31 a32 0 a34

va41 a42 a43 0

Chapter 4 - Implementation of MatriX

www.manaraa.com

 34

In this case, we can select any row and check the count of non-zero numbers in the

selected row. If the count number equals 1 then it means the rest of the entries in this row

are Os. In this case we divide the selected row by the value of the only entry that is not

zero. If the count number is greater than 1 then we find another row to eliminate the entry

in the row. Therefore we need to decide which entry we need to eliminate. We first

exclude those entries equal to 0 and then exclude the ones that cannot be eliminated by

any row.

For example:

0 a12 a13 a14
N

a21 0 a23 a24

0 0 a33 0
va41 0 a43 a44,

In the matrix above, we would not select the first entry in the first row as it is 0. We

would not select the second one either, because it is not eliminable. So then we need to

choose from the third and fourth ones. Normally we select the one with the maximum

absolute value, but when we are selecting which column in the row should be eliminated,

we need to avoid selecting the ones that cause the zeroes to be added to other non-zero

values in the row we selected. For example in the above matrix, we won't select the

fourth entry in the first row to eliminate. In this case we exclude those rows that has

non-zero at the column that we have 0 in the row we selected earlier. Then we select the

entry with the maximum absolute value from those entries which can be eliminated by

the rows that are not excluded.

After we select the cell we want to eliminate, we identify its row and work on selecting

another row to add it to the identified row. If there is only one row available we should

Chapter 4 - Implementation of MatriX

www.manaraa.com

35

select that row, otherwise we choose the one that has the maximum number of zeroes.

Once we decide on the cell to be eliminated and the row that can eliminate this cell, we

first calculate the least common multiple of the number we are going to eliminate and the

number that eliminates it. Then we do row multiplication to those two rows by the

quotient of the least common multiple and these two numbers. And then do the row

addition to eliminate the cell. The process would look like this:

a 13 a 14

42! 0 a23 a24\ =LCM(ai3,a33), therefore,
0 a 33 0
0 a43 a44,

/o

V

a21

0

a41

(° a-*(^) a»*© a'4*©\
a21

0

Va. 41

a12 (-) \a33J
0

0

0

0

0

0

<a13>

«23

a 43

«24

0

a44 /

0 a14 \a33J

a-23

a« * ©
«43

«24

0
,n= LCM(a13,a33)

a 44 /

Then we apply the same process recursively until we have an identity matrix. To avoid an

over-flow exception, before each recursive step we included a process that reduces each

row of the matrix by the greatest common divisor of each row. However, this doesn't

solve the problem permanently.

To test the stability of the developed algorithm, a tool was implemented to test all the

possible 2 by 2 matrices, 10,000 random 3 by 3 matrices and 10,000 random 4 by 4

Chapter 4 - Implementation of MatriX

www.manaraa.com

 36

matrices, in which all entries were ranged from 0 to 9. The results are shown in the Table

4.

Table 4. Failure Rate of the Algorithm

Dimension

2 by 2

3 by 3

4 by 4

Failure Rate

0%

0%

3.128%

As we can see from Table 4, 3.128% of the 4 by 4 matrix problems cannot be solved

using this algorithm, but this is good enough for this game. To avoid the problems that

occur in 4 by 4 matrices, it becomes important to limit the number of steps of the

recursive call. On the other side, no problems were encountered with all matrix problems

of size less than 4x4.

4.3 Student Module

The student module tracks the student's moves and reflects on the student's performance

to the pedagogical module, which it is implemented in the Level class mentioned earlier.

The Level class does not only represent a problem the student needs to solve, but also

gives the stage for the student to perform so that the game can track the student's moves.

The following table shows the members that works for the student module in the level

class.

Table 5. Members of Level for Domain Module

Chapter 4 - Implementation of MatriX

www.manaraa.com

37

Private

Field

Method

Method

Method

Event

stepsRecord

DoRowAddition

A list of instances of the ModelType.Step abstract

class that is used to records the students' steps.

This method records one step into the stepsRecord

after an operation is performed successfully.

DoRowMultiplication This method records one step into the stepsRecord

after an operation is performed successfully.

DoRowSwitching

LevelFinishedEvent

This method records one step into the stepsRecord

after an operation performed successfully.

Occurs when the student has won this level. This

event passes the LevelFinishedEventArgs to the

pedagogical module, in which the time span, step

count and current level difficulty will be used by the

pedagogical module to evaluate the student

performance.

4.4 Pedagogical Module

The pedagogical module allows MatriX to adapt to individual students using a

neuro-fuzzy system. The pedagogical module receives information on the student's

performance from the student module and content information from the domain module

to help it make strategic decisions about the student's learning process.

Chapter 4 - Implementation of MatriX

www.manaraa.com

38

4.4.1 Fuzzy system

The structure of the neuro-fuzzy system is a neural network with nodes acting as neurons

connected together forming links. Each node gathers input values from all previous nodes

linked to it (Michael Negnevitsky, 2011).

Figure 12. Getting Inputs from Previous Nodes

A method called UpdateOutput is used by the nodes to generate an input array, in which

each entry equals the output value from previous node times the weight and minus the

threshold as the formula below.

inputn = V outputm * weightm - threshold

However, in this program, each layer has a switch to indicate if the training and weights

are enabled in the current layer. If the switch is turned off (Boolean value equals false)

then each value in the input array would simply be equal to the output value from the

previous node.

Chapter 4 - Implementation of MatriX

www.manaraa.com

39

Figure 13. The Structure of the Neuro-fuzzy System

Chapter 4 - Implementation of MatriX

www.manaraa.com

40

After the node gets the input values, it passes the input values to a method called

Compute. Each node updates its output value using the expression below;

(outputn = 1 + eJompute0) if this, layer. EnableWeights

outputn = compute^) if not this, layer. EnableW eights

When training each node -if the layer the node belongs to enables training- the node

computes the error gradient using the error gradient of the next nodes, then it uses the

new error gradient to compute the weight delta and add this delta value to the current

weight value. Although these functions were implemented in MatriX, the learning

functionality was turned off as discussed later in this thesis.

The compute methods vary by the kinds of the nodes. Table 6 shows the different

implementation of the compute methods.

 Table 6. Compute Methods

Type of Node

Input Node

Fuzzification Node

Compute Method

Returns the average value of the inputs

Rule Node

Output membership function node

Returns the result of the membership function,

using the average value of the inputs as the

input of the membership function

Returns the minimum value of the inputs

Returns the result of the output membership

function, using the maximum value of the

inputs as the input of the membership function

Chapter 4 - Implementation of MatriX

www.manaraa.com

41

Defuzzification Node Returns the result of centroid function

The membership functions are not implemented in the node classes and are invoked as

delegates in the compute methods. These membership functions are implemented by the

instance that uses the fuzzy system in order to allow the system to be as generalized as

possible. The centroid function uses the following expression:

X outputi * centersi
centriod =

X ouputi

To get the output of the system, the system searches the network layer by layer and then

searches each layer node by node then calls all update output methods for each node, and

finally returns the output values of the nodes in the last layer.

To explain how to use this fuzzy system, here we have a simple example. First we need to

define your input nodes, fuzzification nodes, rule nodes, output-membership-function

nodes and defuzzification nodes. Each node has a member called PreviousNode, which is

used to connect the new node with nodes in the previous layer. There is also a member

property called NextNode used to connect nodes in the next layer. However we do not

need to take care of the NextNode properties as this is done automatically when the

EndBuild method is called. Finally BeginBuild and EndBuild methods are called at the

beginning to build the network and at the end to finish the building process building,

respectively. The following code is used to define an input node.

C#

InputNode inputNode = new InputNodeQ { Name = "input_l" };

Chapter 4 - Implementation of Matrix

www.manaraa.com

 42

After then the fuzzification nodes are defined. When building a new fuzzification node,

we need to assign a property in the node called PreviousNodes and a suitable method to

the membership function delegate. In the invoked membership function delegate, some

other functions such as trimf and trapmf were invoked from the Math class, in which the

trimf represents a triangular-shaped membership function and the trapmf represents a

trapezoidal-shaped membership function. Sample code follows:

C#

FuzzificationNode fuzzl = new FuzzificationNode()

{
PreviousNodes = new List<Node>() {inputNode },

Name = "fuzzl",

MembershipFunction = (n) =>

{
return MathHelper.trimf(n.InputValues.Average(), 0, 0.2, 0.5);

}

};

FuzzificationNode fuzz2 = new FuzzificationNode()

{
PreviousNodes = new List<Node>() { inputNode },

Name = "fuzz2",

MembershipFunction = (n) =>

{
return MatliHelper.trampf(n.InputValues.Average(), 0.3, 0.5,0.6, 1);

}

};

After defining the fuzzification nodes, we define the rule nodes in which the previous

Chapter 4 - Implementation of Matrix

www.manaraa.com

43

nodes property was assigned by the fuzzification nodes defined earlier as shown below;

C#

RuleNode rulel = new RuleNode()

{

PreviousNodes = new List<Node>() { fuzzl },

Name = "R01"

};

RuleNode rule2 = new RuleNode()

{

PreviousNodes = new List<Node>() { fuzz2 },

Name = "R02"

};

Then we define the output membership function nodes. When we are building a new node,

we need to assign a rule node or several to the previous node property. Also we need to

assign a method to the output membership function delegate, for which we used lambda

expression again in the sample code. In the method that we assigned to the output

membership function delegate, we called some functions such as triArea and trapArea, in

which the triArea calculates the area form by a triangular-shaped membership function

and the trapArea calculates the area form by a trapezoidal-shaped membership function.

Also we assign the center value of the membership functions, which would be used for

centroid calculation in deffuzification. The sample codes follow:

Chapter 4 - Implementation of MatriX

www.manaraa.com

44

C#

OutputMembershipFunctionNode outl = new OutputMembershipFunctionNode()

{

PreviousNodes = new List<Node>() { rulel },

Name = "outl",

OutputMembershipFunction = (n) =>

{n.Center=0.5; return MathHelper.trapArea(n.InputValues.Max(), 0.25,

0.4, 0.6, 0.75);

}

};

OutputMembershipFunctionNode out2 = new OutputMembershipFunctionNode()

{

PreviousNodes = new List<Node>() { rule2 },

Name = "out2",

OutputMembershipFunction = (n) =>{n.Center=0.75;

return MathHelper.triArea(n.InputValues.Max(), 0.5, 0.75, le+06);

}};
Then we define the defuzzification node, and link it with all the output membership

nodes by assigning the previous nodes' properties.

C#

DefuzzificationNode defuzziNode = new DefuzzificationNode() { PreviousNodes - new List<Node>()

{ outl, out2 }, Name = "DefuzzNode" };

Then the BeginBuild method is called to let the system know the network is built but not

ready to use. And then we add those nodes defined earlier to relative layers, and indicate

which layer would enable learning and weights (currently disabled in this work). After

that the learning rate is declared if the learning method is enabled in any layer. Finally,

Chapter 4 - Implementation of Matrix

www.manaraa.com

45

we call the EndBuild method, which automatically assigns the nextNodes properties in

each node that links one node with the next one.

C#

nfs.BeginBuild();

nfs.InputLayer.AddNodes(inputNode);

nfs.FuzzificationLayer.AddNodes(fuzzl, fuzz2);

nfs.FuzzificationLayer.EnableWeights=false;

nfs.RulesLayer.AddNodes(rulel, rule2);

nfs.RulesLayer.EnableWeights = false;

nfs.OutputMembershipFunctionLayer.AddNodes(outl,out2);

nfs.OutputMembershipFunctionLayer.Enable Weights = false;

nfs.DefuzzificationLayer.AddNodes(defuzziNode);

nfs.DefuzzificationLayer.Enable Weights = false;

nfs.EnableHiddenLayer = false;

nfs.LearningRate = 0.3;

nfs.EndBuild();

After the pedagogical module decides on the difficulty level of the next problem to

present to the student, it selects a problem that has the closest difficulty degree to the one

given by the fuzzy system from the domain module. The pedagogical module also checks

if this problem has been solved earlier by the student, if it is the case it requests another

problem from the domain module. The code is as follows:

C#

float nextDiff = performanceEvaluator.GetNextLevelDifficulty(stepDiff, timeDiff,

e.LevelDifficulty,out fs);

hit prelndex = currentLevellndex;

Chapter 4 - Implementation of Matrix

www.manaraa.com

46

currentLevellndex = levels.IndexOf(nextDiff);

if (prelndex < 2)

currentLevellndex = prelndex + 1;

else if (fs.StepCount = ModelType.StepCount.TooMany && (fs.TimeUsed ==

ModelType.TimeUsed.Medium || fs.TimeUsed ==

ModelType.TimeUsed.TooLong)&&(preIndex+KcurrentLevelIndex))

currentLevellndex = prelndex + 1;

else if (currentLevellndex == prelndex)

{

switch (fs.NextLevelDifficulty)

{

case ModelType.LevelDifficulty.Easy:

currentLevelIndex++;

break;

case ModelType.LevelDifficulty .Medium:

currentLevelIndex++;

break;

case ModelType.LevelDifficulty .Hard:

if ((currentLevellndex + 1) >= levels.Count)

{

foreach (var 1 in levels)

{

if(l.Difficulty>=0.75)

{

currentLevellndex = levels.IndexOf(l.Difficulty);

break;

}

Chapter 4 - Implementation of MatriX

www.manaraa.com

47

}

}

else

currentLevellndex = prelndex + 1;

break;

default:

break;}}

4.4.2 Smart Hint

The pedagogical module gives the student a smart hint on what to do next when the

student is stuck while trying to solve the problem at hand. When the student clicks on the

Smart Hint button a message box pops up and tells the students what to do next. While

testing the smart hint in Matrix, a loop glitch happened in which the pedagogical module

keeps repeating the same hint. This occurred when the student tries to eliminate an entry

in the matrix. For example, let's consider to eliminate one row in the following matrix:

'3 2 4
2 11

.0 0 1

The program believes we should eliminate the upper left cell in the first row (the digit 3).

This can be achieved by multiplying the first row by 2 as follows:

'6 4 8
2 11

.0 0 1

After the student followed this hint, Matrix would regenerate a new solution. As in the

algorithm we mentioned earlier, the first step would be each row in the matrix, thus the

Chapter 4 - Implementation of MatriX

www.manaraa.com

 48

hint would give the students the hint that they need to divide the first row by 2. But the

correct hint should be multiply the second row by 3.

In order to avoid this issue, each step the student takes is tracked and compared to the

generated solution. If the student's solution follows that solution generated by MatriX

then the hints are provided directly from the generated solution. If it is not the case, then

Matrix redefines the problem and uses the student's current step as the new problem and

generates the solution for it. The code is as follows:

Pseudo

Forn = 0...n

If result matrix of step n in previousSolution == currentMatrix Then

Add (n + 1) to startinglndexes list

End if

Next

If count of startinglndexes != 0 Then

result = Copy previousSolution from the max index of starting indexes

End if

Chapter 4 - Implementation of MatriX

www.manaraa.com

 49

Chapter 5 Evaluation

In order to evaluate this game, we recruited 13 students from Columbus State University

to test the game, most of who were undergraduate students with couple of graduate

students. All game testers were requested to finish a pre-test, play the game for 3 days

and then take a post- test and a survey about their play experience.

5.1 Goal

The goal of the evaluation is to answer following questions,

• Can the game help the player learn how to solve linear equations by using Gaussian

Elimination?

• Is the game's user interface friendly enough?

Can the game adapt successfully to individual students?

Chapter 5 - Evaluation

www.manaraa.com

50

5.2 Experimental Testing

In order to answer these questions, we invited 13 students to take a pre-test, play the

game for 3 days and finally answer a post-test and a survey about their play experience.

In the pre-test, there were some questions asking about their educational level, gender

and algebra courses they had taken followed by a set of questions on systems of linear

equations. In the post test similar math problems to those in the pre-test were introduced..

The following table shows the questions in the pre-test.

Table 7. Pre-test Interviews Questions

Question 0

Educational level and gender.

Question 1

Have you ever taken any algebra courses or related courses? If yes, please list the names

of the courses.

Question 2

Have you learnt linear algebra before?

Question 3

Please try to solve the following equations or sets of equations.

i.3x + 5 = 4

.. (3x + 5y = 10
Ui * + 3 = 8

Chapter 5 - Evaluation

www.manaraa.com

51

x + y + z = 12
iii.{x + 2y + 5z = 22

x = Ay

I + m = 5
I + m + p = 5

AZ + 2m + n + p = 8
2/ + m + 2p = 8

5.2.1 Demographic Data

I Male ■ Female

Figure 14. Gender Ratio

In this evaluation, 31% students are female and 69% are male (Figure 14). In addition, as

we can see from the figure 15, we got 39% students were graduate students and 61%

were undergraduate, in which 8% were freshmen, 15% were sophomore, 23% were junior

and 15% were senior.

Chapter 5 - Evaluation

www.manaraa.com

52

Junior
23%

Figure 15. Students' Educational Levels

Linear Algebra

12 -

10 -

8 -

6 -

4 -

2 ■

1
 HS ■

■ No

 H at- EYes

mm
0 -

Algebra

Fieure 16. ResDonses of Question 1 and Question 2

Responses of questions 1 and 2 show that 6 students learned linear algebra and 7 students

did not. However from the result of the pre-test, showed in Figure 17, only 1 student was

able to correctly solve question no.5 in the pre-test, which indicates that even those who

had linear algebra background do not have competent skills in this domain.

Chapter 5 - Evaluation

www.manaraa.com

53

Gave up

■ Incorrect

■ Correct

Ql Q2 Q3 Q4 Q5

Figure 17. Result of Pre-test

Figure 17 shows that the participants gave up easily on the harder problems. Most

students were able to successfully solve question 1 in the pre-test with the exception of 1

student. And about 80 % of the participants solved problem 2 correctly. Yet only 55% of

them could correctly solve problems 3 and 4 and nearly 80% of the participants gave up

on the last problem.

When the participants finished the pre-test, they were allowed to play MatriX for couple

of hours over three days (average 3 hours in total) and then were invited back for a

post-test. The following table shows the questions in the post-test.

Table 8. Post-test Interviews Questions

Question 1

How easy was it to figure out the rules of the game?

1-Very easy 2-easy 3-neutral 4-difficult 5-very difficult.

Chapter 5 - Evaluation

www.manaraa.com

54

Question 2

How do you describe your play experience?

Question 3

To what extent was the feedback provided in the game helpful?

1-Very helpful 2-helpful 3-neutral 4-not helpful at all

Question 4

Do you think the game presents you with the right level of problems?

1- problems were at the right level

2- problems were too easy

3- problems were too hard

Question 5

What would be a good change to the game to make it more appealing to you?

Question 6

Please try to solve the following equations or sets of equations.

i. 3x-5 = 4

..(5x + 3y = 27
n\2x + y = 10

(Sx + 3y + 2z = 17
i.|3x + 2y + 2z= 13

2x + y + 2z = 10

Chapter 5 - Evaluation

www.manaraa.com

55

1 = 1
l + n = 3

</ + 3m + 2n + 4p = 15
m + n + p = 8

•(*! i :l)■©-©
Besides some new questions, the math problems in the post-test were slightly different

from the problems in the pre-test (except the problem 5), but still in the same difficulty

levels. The problem 5 had no change as most of them gave it up in the pre-test.

The following figure shows the students' performance in the post-test.

Gave up

■ Incorrect

■ Correct

Figure 18. Result of Second Test

As seen in Figure 18, the correction rate of the problems 2 and 4 increased slightly, and

the correction rate of problem 5 changed from 9% to 23%. And the gave-up rate

decreased significantly for problems 3, 4 and 5, which is a good indication in itself. On

Chapter 5 - Evaluation

www.manaraa.com

 56

the other hand, the correction rate for the problem 3 dropped by 15%. These results made

us eager to look closer at the collected data which lead us to interesting results.

Looking at the solution steps, we found that although the game might have improved the

desired operations, it did not help the students improve their calculation skills. To remove

this interfering factor, we asked those students to take the post-test again while allowing

them to use a special version of the game as a calculator.

Figure 19. The Screenshot of the Special Version

As seen in Figure 19, we replaced the smart hint button with a redo/undo button, which

allows the students to view all the steps they take. When the student finishes a level, the

game would not go to the next level until the student clicks on the next button.

43% of the students agreed to retake the test. The new results are shown in Figure 20.

Chapter 5 - Evaluation

www.manaraa.com

57

Gave up

l Incorrect

I Correct

Ql Q2 Q3 Q4 Q5

Figure 20. Results of the Second Post Test

As we can see from Figure 20, the correction rates of the problems 3, 4 and 5

significantly increased, which proves our assumption.

We have also developed a post survey to ask about the participants' game experience. The

results of the survey are shown in Table 7. The first question is concerned with the user

interface, as mentioned earlier; we would like to know that if the game's user interface

was intuitive and user friendly. 39% of students thought that it was easy to figure out the

game rules through the interaction with the user interface. However there were still 38%

of the students who criticized the interface and felt that it was not intuitive enough and

asked for more directions.

Chapter 5 - Evaluation

www.manaraa.com

58

Figure 21. How Easy to Figure Out the Rules

The second question in the survey is concerned with the general game experience. The

results are shown in Figure 22.

Fieure 22. Responses to Question 2 in the Post-test

Chapter 5 - Evaluation

www.manaraa.com

 59

From the above figure, we can see that the students got mostly a good game experience.

Most of the participants stated that the game was interesting and fun. One participant said

"the game was easy, informative, addicting and relaxing". However, 2 participants

mentioned that they experienced a hard time at the beginning and one participant did not

get the idea of the game at all.

Question 3 is concerned with learning and knowledge transfer. The results are shown in

the Figure 23. Most participants believe the game was helpful.

Figure 23. Responses to the Question 3

Question 4 is more concerned with adaptation and if the pedagogical module was able to

choose the right levels for the students. The results are shown in Figure 24; 77% of

students believe that the game presented them with the right level of problems. However

23% of the students complain that the levels were too hard.

Chapter 5 - Evaluation

www.manaraa.com

60

E No
Too hard

3

23%
23%

Figure 24. Responses to Question 4

More Animation

Show XYZ symbols at top or bottom

Better interaction response

Interface to choose levels

Undo button

No change

More easy levels

More detailed tutorial

More levels

Display the result longer

Figure 25. Responses to Question 5

Figure 25 shows the responses to question 5, which asked about the participant's opinion

to enhance the game. Most participants requested a more detailed tutorial in the game in

addition to adding more levels. Some students would like the freedom to choose the

levels they would like to play. Some mentioned that the game should have some

animation as the automatic row switching sometimes would confuse them.

Chapter 5 - Evaluation

www.manaraa.com

 61

Chapter 6 Conclusion

Matrix is an intelligent educational game developed for the purpose of this thesis to teach

students how to solve systems of linear equations using matrices and improve their

problem solving skills. This game consists of 4 modules - a domain module, a student

module, a pedagogical module and a presentation module. Matrix utilized a fuzzy system

in the pedagogical module to guide the adaptation process. The fuzzy system was

embedded in an Artificial Neural Network that was not fully utilized in this work. The

important achievement of this thesis is the implementation of an automatic solver that

solves a system of linear equation problems instantly and helps the pedagogical module

to provide smart hints.

Matrix was tested by 13 students from Columbus State University. The study showed

interesting results and provided a proof on the efficiency of the fuzzy pedagogical module.

Matrix was well perceived by the students although more features are needed to be added

to the game as part of the future work. Future works also include improving the player's

experience through the design of a friendlier interface, adding a detailed tutorial and more

levels.

Chapter 6 - Conclusion

www.manaraa.com

62

References

Steve K. Robbins, (2013), Problem Solving: Techniques, Strategies & Skills for Solving

Problems, CreateSpace Independent Publishing Platform.

Bonnie Averbach, (2012), Problem Solving Through Recreational Mathematics (Dover

Books on Mathematics), Dover Publications.

Rania Hodhod, (2010), Interactive Narrative for Adaptive Educational Games:

Architecture and an Application to Character Education, Ph.D. Thesis. The University of

York

Robert J. Lopez, (2010), Introduction Gaussian Elimination, Maplesoft.

https://mail-attacliment.googleusercontent.conVattachment/u/0/?ui=2&ik=73efa70173&vi

ew=att&th=1477e2cdafdl9026&attid=0.1&disp=safe&realattid=f_hy64551yl&zw&sadu

ie=AG9B_P9yCwszkoYN3zEpXS-bmUV_&sadet=1406576467552&sads=6C6uliAoaT-

SlHY6TrqlWQQul 6WM

Jennifer Krawec, Jia Huang, Marjorie Montague, Benikia Kressler & Amanda Melia de

Alba. (2012). The Effects of Cognitive Strategy Instruction on Knowledge of Math

Problem-Solving Processes of Middle School Students With Learning Disabilities.

Hammill Institute on Disabilities 2012.

Mayer, R. E. (1985). Mathematical ability. In R. J. Sternberg (Ed.), Human abilities: An

information processing approach (pp. 127-150). San Francisco, CA: Freeman.

Robert W. Maloy, Sharon A. Edwards & Gordon Anderson. (2010). Teaching Math

Problem Solving Using a Web-based Tutoring System, Learning Games, and Students'

References

www.manaraa.com

63

Writing. University of Massachusetts Amherst. Journal of STEM Education Volume 11 •

Issue 1 & 2 January-June 2010

Polya, G. (1973). How to solve it: A new aspect of mathematical method. Princeton, NJ:

Princeton University Press.

Damien Djaouti, Julian Alvarez, Jean-Pierre Jessel, Olivier Rampnoux. (2011). Origins of

Serious Games, ludoscience, Springer.

Irene Polycarpoua, Julie Krausea, Cyndi Radera, Chad Kembela, Christopher Pouporea &

Eric Chiu, (2010) Math-City: an educational game for K-12 mathematics. Procedia

Social and Behavioral Sciences 9 (2010) 845-850

Regina Stathacopoulou, (2006). Student modeling using fuzzy logic and neural networks.

Department of Informatics and Telecommunications, University of Athens,

Panepistimiopo-lis, GR-15784 Athens, Greece

Aaron Reed, (2010), Learning XNA 4.0: Game Development for the PC, Xbox 360, and

Windows Phone 7, O'Reilly Media.

Michael Negnevitsky (2011), Artificial Intelligence: A Guide to Intelligent Systems.

Pearson Education Limited. pp268-277

References

www.manaraa.com

	An Adaptive Educational Game To Help Students Learn How To Solve Systems Of Linear Equations
	Recommended Citation

	An Adaptive Educational Game To Help Students Learn How To Solve Systems Of Linear Equations

